
Testing under Information Manipulation

Silvia Martinez-Gorricho∗ Carlos Oyarzun †

Abstract

A decision-maker commits to a standard of evidence to discourage low-
type agents and encourage high-type agents to improve their signal distri-
bution. If the effect of commitment on low-type agents dominates its effect
on high-type agents, optimal commitment standards are confirmative: for
large priors that the agent’s type is low, the optimal standard is harsh; i.e.,
it requires more favorable evidence than ex-post optimal tests to choose the
agent’s preferred action. Similarly, for large priors that the agent’s type is
high, the optimal standard is soft. If the effect of commitment on high-type
agents dominates its effect on low-type agents, these results reverse and op-
timal commitment standards are conservative (cf. Li (2001)). Commitment
is Pareto improving for some priors. A revelation mechanism Pareto dom-
inates commitment for large priors that the type is low, and is generically
preferred by the decision-maker over simple commitment to a standard.

Keywords: Information manipulation, Commitment, Ex-post inefficiency,
Confirmativism, Conservatism, Standard of Evidence.
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1 Introduction

In the wake of the replicability crisis, the scientific community has come to realize
that methodologies and practices followed for decades, or even centuries, are not
immune to malign incentives and research misconduct in particular.1 A number
of alternative solutions have been put forth; for instance, recently, the Ministry of
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1Di Tillio et al. (2017) provide a historical account of the development of experimental meth-

ods.
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Science and Technology and courts in China have moved towards hard penalties
for scientific misconduct —the most extreme even considering the death penalty.2

However, in many fields, in practice it is nearly impossible to detect research
misconduct and even more difficult to prove it, rendering potential punishment
virtually ineffective.3 The logic of the problem is not exclusive to research miscon-
duct. In civil litigation, evidence tampering is pervasive. Sanchirico (2004) points
out that “according to many judges and practitioners[,]...documents that should
be produced in response to a discovery request are regularly shredded, altered, or
suppressed.” Another example is test-defensiveness in psychology. According to
Butcher (2002): “When taking psychological tests at pre-employment, pilots who
have personality problems and other mental health symptoms can respond in a way
to ‘mask’ those problems.”4

We explore alternative ways to disincentivize research misconduct, evidence
tampering, test-defensiveness, and other forms of evidence manipulation, by al-
tering the design of the decision process.5 We consider a decision maker facing
a binary decision problem, and an agent who prefers one of the actions, regard-
less of her type. Before choosing an action, the decision maker observes evidence
that is partially informative about the agent’s type: an editor decides whether
to publish a manuscript, a judge decides whether to acquit a defendant, and a
manager decides whether to hire a pilot applying to a job in a commercial airline.
Regardless of her type, the agent may exert hidden efforts to alter the evidence in
order to improve the chances of a favorable decision.6 Since the decision maker’s
and high type agents’ incentives are aligned, we refer to their effort as information
generation. In contrast, we refer to the effort of low type agents as information
undermining. Our analysis considers both forms of information manipulation.

First, we analyze a simple model of commitment to a standard of evidence.
In order to discourage information undermining and incentivize information gen-
eration, the resulting standards under commitment differ from optimal statistical
decision-making. We characterize the direction of the deviations from ex-post opti-

2Source: https://www.statnews.com/2017/06/23/china-death-penalty-research-fraud/
(STATNEWS June 23, 2017).

3Although punishment is not completely ineffective in all fields, within several of them, un-
covering misconduct may not be practical (see, e.g., Fanelli (2009)).

4Airlines’ screening of pilots was subject to intensive scrutinity in 2015, in the aftermath of
a Germanwings plane crash in the Alps, believed to be deliberately caused by the pilot.

5In the absence of concerns about collateral effects on the agent’s incentives, such decisions
are analyzed as standard statistical decision problems (see, e.g., Neyman and Pearson (1933),
Karlin and Rubin (1956), and DeGroot (2005)).

6For instance, Butcher (1994) suggests that high average performance of pilots in psychologi-
cal tests can be explained by fit pilots’ attempts to display “overly favorable response patterns.”
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mality in terms of two interacting factors: the manipulation effect that is dominant
(undermining or generation), and the prior probability that the agent’s type is low
(Propositions 1, 3, 4, and 5). Second, we analyze a revelation mechanism for this
problem.

Commitment improves the expected payoff of the decision maker and, when it
involves lowering the standard, it leads to outcomes that are Pareto superior to
those without commitment (Corollaries 4 and 5). In turn, the optimal mechanism
Pareto dominates commitment to a standard for relatively high priors that the
type is low (Propositions 6 and 7).

We characterize when optimal standards of evidence are harsh or soft ; i.e.,
require, respectively, more or less favorable evidence than optimal statistical tests
for choosing the agent’s preferred action.7 In the pure (or dominating) information
undermining setting, for large prior probabilities that the type is high, the ex-ante
optimal standard is soft; and, for large prior probabilities that the type is low,
the ex-ante optimal standard is harsh (Propositions 1 and 3). Soft standards help
decision making if low type agents’ effort is a strategic complement of the standard
(Lemma 2). In turn, under the MLRP assumption, strategic complementarity
develops for the low standards that arise in equilibrium, when the agent’s type is
likely to be high (Lemmata 1 and 3). An analogous reasoning reveals why harsh
standards are ex-ante optimal when the agent’s type is likely to be low.

A qualitative implication of this result is that, under pure (or dominating)
information undermining, optimal standards tend to be confirmative; i.e., they
often favor the optimal decision based on prior information only (Corollary 1).8

Confirmative standards —soft standards for new drugs with good prior prospects
in particular— are consistent with recent findings on the approval of new drugs for
which the FDA has granted a Breakthrough-Drug Designation. This designation
is given based on preliminary evidence to drugs that could provide a substantial
improvement to what is available on the market. A number of drugs that received
this designation, however, were approved by the FDA, despite subsequent trials
showing limited efficacy. Lowering the standard may benefit decision making by
discouraging information undermining (see Section 8 for further discussion).

In contrast, in the pure (or dominating) information generation model, conser-
vative standards —i.e., standards adjusted in the opposite direction to the optimal
decision based on prior information only— are ex-ante optimal more often (Propo-

7Commitment does not always lead to ex-post inefficiencies (see, e.g., Li and Suen (2004)).
8Indeed, we find families of distributions such that all standard’s deviations from ex-post

optimality are confirmative for all agent’s hidden effort costs (Proposition 2).
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sitions 4 and 5, and Corollary 2). Li (2001) shows that conservative standards also
arise in information aggregation models with costly information acquisition. Both
Li (2001) and this paper highlight that the quality of information is endogenous to
decision-making. While he focuses on mitigating free-riding by committee mem-
bers, we focus on discouraging (encouraging) effort by low (high) type agents
—who, in Li’s model, are non-strategic. In his setup, committee members’ effort
reduces the variance of the signal; in ours, agents’ effort shifts probability mass to
the right.

Finally, we consider revelation mechanisms without transfers: given a reported
type, the decision maker sets probabilities of outright acceptance, outright rejec-
tion, or taking a test. In the optimal mechanism, only candidates reporting a
high type are tested. We provide conditions such that, for large prior probabilities
that the agent’s type is low, the agent prefers the optimal mechanism over simple
commitment to a standard, and the opposite when those probabilities are small.
Since in the optimal mechanism the low type is not tested, the decision maker
extracts the manipulation cost and obtains higher expected payoffs than when he
commits to a standard.
Related literature. The work of Li (2001) discussed above is the closest an-
tecedent to our work. Our setup also relates to the model studied by Frankel
and Kartik (2019a), in which, agents maximize the expected market-valuation of
their quality, determined directly by their “natural” type and indirectly by their
gaming-ability type. While their focus is on the equilibrium informativeness about
type dimensions, ours is on the decision-maker’s management of information ma-
nipulation.9

Three concurrent working papers analyze related problems: Cunningham and
Moreno de Barreda (2019) show that costly signal-jamming improves a sender’s
probability of persuading the receiver in a model with uniformly distributed types.10

In their model, signal-jamming makes the receiver worse-off and commitment al-
ways leads to harsh standards. In contrast, in our model, information manipu-
lation may be dominated by information generation making the decision-maker
(the receiver) better-off; and, under pure or dominant information undermining
or generation, commitment always leads to soft standards for a range of priors.

9Similarly, Ederer et al. (2018) analyze how “opaque” contracts help a principal incentivize an
agent to exert balanced efforts between tasks. In contrast, in our paper, standards’ distortions
aim to discourage (encourage) the low (high) type agent to exert effort.

10Also related is the literature on “influence activities,” (see, e.g., Meyer et al. (1992)). Driven
by rent-seeking, influence activities usually lead to resource misallocation within organizations.
Recent work, however, has studied the benefits of influence activities, such as helping information
transmission (Choe and Park (2017)) or incentivizing information acquisition (Laux (2008)).
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Frankel and Kartik (2019b) show how under-response to information may help a
receiver to discourage data manipulation, and Ball (2020) analyzes how the re-
ceiver’s commitment problem can be mitigated by introducing an intermediary
who distorts and coarsens primitive information. While these papers and ours
exhibit moral hazard, our analysis focuses on how to tailor commitment to the
specific manipulation faced by the decision maker and how to take advantage of
revelation mechanisms to address manipulation.

Taylor and Yildirim (2011) consider how evidence standards play a dual role:
as a selection criterion and as a tool to incentivize an agent whose effort increases
the probability that her type is high. Although their analysis focuses on comparing
blind versus informed reviews, they also consider a model with commitment to a
standard in which the principal observes the agent’s ability but not her type, and
accordingly sets different standards. Optimal standards are harsh (soft) for agents
with low-cost (high-cost) effort, resembling our findings for the pure information
generation model. The driving forces behind their findings and ours are different,
however, as in our model, the agent has private information and effort is purely
wasteful (it does not affect the probability that the agent’s type is high).

Our paper contributes to a growing literature on research practices and eco-
nomic incentives.11 Di Tillio et al. (2017, 2018) study how scientists’ persuasion
bias affects the informativeness of experiments, explicitly considering the prob-
abilistic structure of sample selection. In contrast, our analysis abstracts from
the specifics of information manipulation —yet, to illustrate, in the Appendix
we show how specific data manipulation processes, arising from hidden sample
design and data disposal, fit within our setup (or trivial generalizations). Our
framework is very different from persuasion models a la Gentzkow and Kamenica
(2011):12 (i) in our model, there is asymmetric information, because the sender
(the agent) knows her type; (ii) our model has moral hazard: the receiver (the
decision maker) does not observe the signal distribution chosen by the sender; (iii)
the sender is restricted to choose within a set of signal distributions, and it is
costly to choose more favorable signal distributions; and (iv) the receiver affects
the sender’s incentives by committing to a standard.

The distinctive feature of our model, in comparison to classical statistical prob-
lems, is the presence of moral hazard. Our mechanism design approach, however,
is rather shaped by information asymmetry: in the optimal revelation mechanism,

11See, e.g., Chassang et al. (2012), Tetenov (2016), Henry and Ottaviani (2019), Di Tillio et al.
(2017, 2018), Herresthal (2018), McClellan (2020), and references therein.

12See, e.g., Kolotilin (2015), Hedlund (2017). Within this literature, Perez-Richet and Skreta
(2018) is the closest reference, as they consider manipulation within a Bayesian persuasion setup.
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the menu offered by the decision-maker has features resembling a discrete-type
version of Mussa and Rosen (1978) price discrimination model.13 Our setup, how-
ever, is different, because the manager has aligned (opposite) interests with the
high (low) type agent.14

2 The Model

A manager (he) decides whether to hire or reject a candidate (she). He prefers
hiring the candidate if she is fit and rejecting her if she is unfit. The candidate’s
fitness, however, is not observable to the manager, and the candidate is fit with a
prior probability strictly between 0 and 1, and unfit otherwise. The prior unfitness
odds, i.e., the prior probability that the candidate is unfit divided by the prior
probability that the candidate is fit, are denoted by κ.

The manager is risk-neutral and minimizes expected losses. Without loss of
generality, the manager’s losses due to hiring unfit candidates and rejecting fit
candidates are normalized to 1.15 For κ < (>)1, if the manager were to make
his decision based on prior information only, he would choose hiring (rejection).
Throughout the paper we refer to κ simply as the prior. A useful interpretation
for the reader to keep in mind is that κ corresponds to a measure of the manager’s
relative expected loss from hiring given the prior information.

2.1 Evidence

The manager runs a test to obtain further evidence on the candidate’s fitness.
The result of the test is the realization of a signal z ∈ [0, 1]. The distribution of
the signal is determined by the candidate’s readiness for the test, θ ∈ [θ, θ] =: Θ.
The distribution and density functions of a candidate’s signal with readiness θ are
denoted by F (·, θ) and f(·, θ), respectively. Thus, the domain of F isD := [0, 1]×Θ

and its interior is denoted by D◦; similarly, the interior of Θ is denoted by Θ◦.
13For instance, the low type agent is indifferent between reporting her true type or lying,

whereas the high type agent strictly prefers reporting her type.
14Our paper also relates to the literature on optimal evidentiary legal standards to induce

adequate behavior (see, e.g., Demougin and Fluet (2008), Ganuza et al. (2015), Gerlach (2013),
Kaplow (2011), Sanchirico (2012)). The informative role of evidentiary standards has received
little attention in this literature. Stephenson (2008) analyzes the effect of standards on the
research effort of agencies seeking court approvals, and Mungan and Samuel (2019) show that
harsh standards deter crime when guilty agents mimic innocent ones. Their work, however, has
no counterpart to the characterizations of harsh versus soft standards, or confirmativism versus
conservatism, provided here.

15An increase in the relative weight of hiring the unfit candidate over the weight of rejecting
the fit candidate has the same effect as an increase in κ.
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Assumption F.1 The distribution F is atomless and thrice continuously differ-
entiable on D◦, and f(z, θ) > 0 for all (z, θ) ∈ (0, 1)×Θ.

The partial derivatives of F are defined on the interior of D, and extended
to the boundary points in the usual way, taking the limits —which we assume to
exist throughout.16 We also assume that the density is log-supermodular:

Assumption F.2 The distribution F satisfies

∂2 ln f(z, θ)

∂θ∂z
> 0 (1)

for all (z, θ) ∈ D◦.

Assumption F.2 implies the strict Monotone Likelihood Ratio Property (MLRP):
if θ′ > θ, then f(·,θ′)

f(·,θ) is strictly increasing, and, since MLRP implies strict first-order
stochastic dominance (FOSD), F (z, θ) > F (z, θ′) for all z ∈ (0, 1).

All the proofs are in the Appendix.

2.2 Evidence Standards

Throughout the paper, we only consider readiness pairs θ := (θu, θq) ∈ Θ :=

{θ ∈ Θ2 : θu < θq}, where θu and θq are the readiness of the unfit and fit
candidates, repectively. By MLRP, the manager’s best response to any θ ∈ Θ

is an acceptance standard; i.e., a “threshold” strategy (s) such that the manager
hires the candidate if z ≥ s and rejects her if z < s for some s ∈ [0, 1]. For any
standard s, and readiness profile (θu, θq), the probabilities of wrongful rejection
and wrongful hiring are, respectively, F (s, θq) times the prior probability that the
candidate is fit and (1− F (s, θu)) times the prior probability that the candidate
is unfit. Thus, the manager’s expected loss is an affine transformation of17

V (s,θ) = F (s, θq)− κF (s, θu) (2)

for all (s,θ) ∈ [0, 1]×Θ. We will often explicitly indicate the dependence of V on
the prior κ, writing V (s,θ;κ) instead of V (s,θ).

In a particular case of this problem, the candidate has a “natural” readiness for
the test, θ if she is unfit, and θq > θ if she is fit. The problem solved by the manager
facing a candidate with her natural readiness is called classical statistical problem.

16Assumption F.1 guarantees that these derivatives are real functions on D◦, but since they
do not need to be bounded, they may be infinite on the boundary points.

17The manager’s expected loss is (V + κ) times the prior probability that the candidate is fit.
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The manager’s expected loss in this problem is V (s, θ, θq) = F (s, θq) − κF (s, θ),
for all s ∈ [0, 1]. Let κ := g(0, θ, θq) (κ := g(1, θ, θq)) be the largest (smallest) prior
κ such that the candidate is outright hired (rejected) in the classical statistical
problem. Accordingly, we say that a classical statistical problem is testworthy if
κ ∈ (κ, κ). MLRP implies that κ < 1 < κ. 18

2.3 Information manipulation

By exerting effort, the candidate increases her readiness —formally, we define
effort by the unfit and fit candidates as θu − θ and θq − θq, respectively. The
unfit candidate’s action set is Θ, and the cost of increasing her readiness is given
by Cu : Θ → R≥0. The fit candidate’s cost function is Cq(·; θq) : Θq → R≥0,
with Θq = {θ ∈ Θ : θ ≥ θq}. To avoid notation cluttering, we often are not
explicit about the fit candidate’s cost dependence on θq, and simply write Cq(·)
(and similarly for its derivatives).

The candidate is risk-neutral and her loss from not being hired is normalized
to 1. Given a standard s ∈ [0, 1], the unfit and fit candidates’ expected losses are

Ui(s, θi) := F (s, θi) + Ci(θi), (3)

for i = u, q, respectively, for all θu ∈ Θ and θq ∈ Θq.

Assumption C. 1 The cost functions Cu and Cq (i) are twice continuously dif-
ferentiable, (ii) satisfy Cu(θ) = C ′u(θ) = 0, and for all θq ∈ Θ◦, Cq(θq; θq) =

C ′q(θq; θq) = 0, (iii) C ′′i > −∂2F (s,·)
∂θ2

over the interior of their respective domains,
for all s ∈ (0, 1) and i = u, q; (iv) C ′i(θ) > −Fθ(s, θ) for all s ∈ (0, 1) and i = u, q;
and (v) C ′q(θ; θq) < C ′u(θ) for all θ ∈

(
θq, θ

)
.19

Part (iii) of C.1 is a mild condition20 guaranteeing convexity of the candidate’s
loss function; (iv) implies that θ is not an optimal choice for the candidate; and (v)
imposes that the unfit candidate is less ready for the test than the fit candidate.
Manipulation processes. Several manipulation processes can be analyzed with
our model or trivially modified versions. In the Appendix, we provide an example

18By Remark 3 and continuity of ∂f(s,θ)∂θ , κ (κ) is weakly decreasing (weakly increasing) in θq.
Therefore, the range of priors for which the classical statistical problem is testworthy gets larger
as θq increases.

19The derivatives of functions of one variable are denoted by a prime or d
dx , where x is the

variable.
20For instance, (iii) is automatically satisfied if cost functions are convex (C ′′u > 0 and

C ′′q (·; θq) > 0 over the interior of their respective domains) and F satisfies Convexity of the
Distribution Function (CDFC).
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of sample cherry-picking and outline an example of data selection.

2.4 Commitment to Standards

We consider a dynamic game, denoted by Γ1, in which, (i) first, Nature chooses
the candidate’s type (fit or unfit) and reveals it to the candidate; (ii) the manager
(without observing the candidate’s type) commits to a standard s ∈ [0, 1]. Then,
in stage (iii), having observed the standard chosen by the manager, the candidate
chooses readiness θ. (iv) Nature chooses a signal realization z ∈ [0, 1] according
to F (·, θ), and the candidate is hired if and only if z ≥ s.21

3 Analysis of Commitment

3.1 Strategic Complementarity/Substituibility of Readiness

Given a standard s, the optimal readiness, denoted by θ∗i (s), is a minimizer of
Ui(s, ·) for i = u, q. Since F (0, θ) = 0 and F (1, θ) = 1 for all θ ∈ Θ, θ∗u(0) =

θ∗u(1) = θ and θ∗q(0) = θ∗q(1) = θq. Furthermore, by Assumptions F.1-F.2 and C.1,
θ∗i (s) is an interior solution and satisfies

C ′i(θ
∗
i (s)) = −Fθ(s, θ∗i (s)), (4)

for all s ∈ (0, 1) and i = q, u; and θ∗q > θ∗u.
Readiness is a strategic complement (substitute) of the standard at (s, θ) when

(s, θ) is located in the submodular (supermodular) region of F :

dθ∗i (s)

ds
= −∂f(s, θ∗i (s))

∂θ

(
C ′′i (θ∗i (s)) +

∂2F (s, θ∗i (s))

∂θ2

)−1

(5)

for all s ∈ (0, 1) and i = q, u. By part (iii) of Assumption C.1, the sign of the
effect of the standard on the candidate’s optimal readiness is determined by the
sign of ∂f(s,θ∗i (s))

∂θ
; i.e., by whether F is sub or supermodular at (s, θ∗i (s)).

Remark 1 Assume F.1-F.2 and C.1. Readiness is a strategic complement (sub-
stitute) of the standard at s ∈ [0, 1] (i.e., dθ∗i (s)

ds
> (<)0) if and only if (s, θ∗i (s)) is

located in the submodular (supermodular) region of F , for i = q, u.
21Implicitly, here we assume that agents are capable –as they are in many applications– to

“sabotage" the result of the test. This obligates the manager to define hiring and rejection sets
using a standard, preventing him from (potentially) taking advantage of other ways to determine
these sets. This might explain why standards are widespread in practical decision-making.
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Figure 1: Example 1. Left panel: candidates’ best responses and s̃. Right
panel: candidates’ effort for each standard.

We now provide the first of three lemmas leading to Propositions 1 and 4,
which are key results of the paper.

Lemma 1 Assume F.1-F.2 and C.1. For i = u, q, there exists ŝi ∈ (0, 1) such
that

∂f(s, θ∗i (s))

∂θ


< 0 if 0 ≤ s < ŝi

= 0 if s = ŝi

> 0 if ŝi < s ≤ 1.
(6)

We call this property single modularity-switch: there exists a cut-off ŝi, which
we call the modularity-switch point, such that for standards smaller (greater) than
ŝi, F is submodular (supermodular) at (s, θ∗i (s)). The proof relies on the fact that
we can separate the submodular regions of the domain of F from the supermodular
regions, using the function s̃ defined in Remark 3. Lemma 1 and (5) reveal that
θ∗i is strictly increasing over [0, ŝi] and strictly decreasing over [ŝi, 1] for i = u, q.

Example 1 Consider F (z, θ) = zθ for all (z, θ) ∈ [0, 1]×Θ with Θ = [1− e−1, 2].
For this function, s̃(θ) = e−

1
θ for all θ < θ.

The cost functions are Cu(θ) = 1
2
(θ − θ)2 for all θ ∈ Θ and Cq(θ) = 1

2
(θ −

θq)
2 for all θ ∈ Θq. The unfit candidate’s optimal readiness θ∗u(s) is the root of

−sθ∗u(s) ln s = θ∗u(s)− θ for all s ∈ (0, 1). The only duplet (s, θ) ∈ [0, 1]×Θ in the
intersection of the graphs of s̃ and θ∗u is (ŝu, θ

∗
u(ŝu)) = (e−1, 1). Similarly, if we

set θq = 5
4
− 4

5e
, we have (ŝq, θ

∗
q(ŝq)) = (e−

4
5 , 5

4
). The left panel of Figure 1 shows

s̃, θ∗u, and θ∗q , and the right panel displays the corresponding efforts.

The manager’s and candidate’s expected losses are given by (2) and (3), re-
spectively, and their preferences, including κ, θq, F , Cu, and Cq, are common
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knowledge. The unfit and fit candidates’ sets of strategies, denoted by Θ[0,1] and
Θ

[0,1]
q , respectively, are set of functions mapping standards to readiness.
Our analysis focuses on Subgame Perfect Nash Equilibria (SPNE) in pure

strategies ; i.e., triplets
(
s∗P , θ

∗
u, θ
∗
q

)
∈ [0, 1]×Θ[0,1]×Θ

[0,1]
q such that V (s∗P , θ

∗
u(s
∗
P ), θ∗q(s

∗
P )) ≤

V (s, θ∗u(s), θ
∗
q(s)) for all s ∈ [0, 1], and Uu(s, θ

∗
u(s)) ≤ Uu(s, θ) for all θ ∈ Θ and

Uq(s, θ
∗
q(s)) ≤ Uq(s, θ) for all θ ∈ Θq, for all s ∈ [0, 1].22 It is not difficult to show

that, under Assumptions F.1, F.2, and C.1, a SPNE always exists.

3.2 Harsh and Soft Standards

The manager’s expected loss as a function of the standard is given by

V(s) := V (s, θ∗u(s), θ
∗
q(s)) = F (s, θ∗q(s))− κF (s, θ∗u(s)),

with

dV(s)

ds
= f(s, θ∗q(s)) + Fθ(s, θ

∗
q(s))

dθ∗q(s)

ds
− κf(s, θ∗u(s))− κFθ(s, θ∗u(s))

dθ∗u(s)

ds
, (7)

for all s ∈ (0, 1). Using the total derivatives of the distribution of the signal for
each type, di(s) :=

dF (s,θ∗i (s))

ds
= f(s, θ∗i (s)) + Fθ(s, θ

∗
i (s))

dθ∗i (s)

ds
for i = u, q and

s ∈ [0, 1], we define the pseudo likelihood ratio function v, with

v(s) :=
dq(s)

du(s)
,

for all s ∈ {z ∈ (0, 1) : du(z) 6= 0} ∪ {0, 1}. Thus, for all SPNE such that s∗P ∈
(0, 1), we have v(s∗P ) = κ.

In setting the standard, the manager takes into account the candidate’s in-
centives to exert effort —the second and fourth terms on the right-hand side of
equation (7). Thus, equilibrium standards, in general, are not ex-post efficient.

Definition 1 Let (s∗P , θ
∗
u, θ
∗
q) be a SPNE of Γ1. The equilibrium standard is soft

(harsh) if s∗P < (> )s∗
(
θ∗u(s

∗
P ), θ∗q(s

∗
P );κ

)
.

Upon observing the signal, at the margin, a harsh manager rejects a candidate
even if the expected loss from hiring is strictly less than the expected loss from
rejection. Similarly, at the margin, a soft manager hires a candidate even if the

22Strictly speaking, the relevant equilibrium concept is Perfect Bayesian Equilibrium, but we
ommit specifying beliefs as they are trivial: the manager’s beliefs are the same as the prior, and
the candidate observes the standard and her type.
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expected loss from rejection is strictly less than the expected loss from hiring.
In contrast, the standard set by the manager in the Bayesian Nash equilibrium
(BNE) of the static game Γ0, in which the candidate does not observe the standard
before choosing her readiness, is ex-post efficient. The Appendix provides a brief
analysis of the static game and its BNE, denoted by (s∗NE, θ

∗
uNE, θ

∗
qNE). Our focus,

however, is on the dynamic game Γ1.
For any SPNE (s∗P , θ

∗
u, θ
∗
q) with s∗P ∈ (0, 1), if F is submodular at (s∗P , θ

∗
u(s
∗
P ))

and supermodular at (s∗P , θ
∗
q(s
∗
P )), then the manager is soft:23 if s∗P ≥ s∗(θ∗u(s

∗
P ), θ∗q(s

∗
P );κ),

then the manager could increase his expected payoff by a marginal decrease in the
standard, as this would reduce information undermining and increase information
generation, and improve (or keep nearly unchanged) ex-post efficiency, contra-
dicting that s∗P is an equilibrium standard. Analogously, the manager is harsh in
equilibria such that (s∗P , θ

∗
u(s
∗
P )) and (s∗P , θ

∗
q(s
∗
P )) are located in the supermodular

and submodular regions of F , respectively.24

If both (s∗P , θ
∗
u(s
∗
P )) and (s∗P , θ

∗
q(s
∗
P )) are located in the submodular region of F ,

or both are located in the supermodular region of F , then the relative magnitudes
of the strategic effects of the standard on each type of candidate’s effort play a
critical role. In particular, we define the strategic ratio

r(s) := Fθ(s, θ
∗
q(s))

dθ∗q(s)

ds

(
Fθ(s, θ

∗
u(s))

dθ∗u(s)

ds

)−1

for all s ∈ (0, 1) \ {ŝu}, and r(0) := lims→0 r(s), r(ŝu) := lims→ŝu r(s) and r(1) :=

lims→1 r(s), respectively, whenever these limits exist. Thus, the strategic ratio is
the ratio of the strategic effect of the standard on the signal distribution of the
fit candidate, divided by the corresponding effect on the signal distribution of the
unfit candidate.

Lemma 2 Assume F.1-F.2 and C.1. For any SPNE (s∗P , θ
∗
u, θ
∗
q) of Γ1 with s∗P ∈

(0, 1):

(i) if (s∗P , θ
∗
u(s
∗
P )) and (s∗P , θ

∗
q(s
∗
P )) are located in the submodular and supermod-

ular regions of F , respectively, i.e., s∗P ∈ (ŝq, ŝu), then the manager is soft;

(ii) if (s∗P , θ
∗
u(s
∗
P )) and (s∗P , θ

∗
q(s
∗
P )) are located in the supermodular and submod-

ular regions of F , respectively, i.e., s∗P ∈ (ŝu, ŝq), then the manager is harsh;

(iii) if both (s∗P , θ
∗
u(s
∗
P )) and (s∗P , θ

∗
q(s
∗
P )) are located in the submodular region,

23For instance, if s̃ is strictly decreasing, then this is the case for s∗P ∈ (ŝq, ŝu).
24If s̃ is strictly increasing, then this is the case for s∗P ∈ (ŝu, ŝq).
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i.e., s∗P ∈ (0,min{ŝq, ŝu}), then the manager is soft (harsh) if and only if
r(s∗P ) < (>)κ; and

(iv) if both (s∗P , θ
∗
u(s
∗
P )) and (s∗P , θ

∗
q(s
∗
P )) are located in the supermodular region,

i.e., s∗P ∈ (max{ŝq, ŝu}, 1), then the manager is soft (harsh) if and only if
r(s∗P ) > (<)κ.

The proof of Lemma 2 follows directly from Remark 1 and (7). Now we discuss
the intuition of parts (iii) and (iv) for the case in which r(s∗P ) < κ (the intuition
of the case r(s∗P ) > κ is analogous). If the strategic ratio is less than the prior,
then the manager is relatively more concerned with the effect of his commitment
on the effort exerted by the unfit candidate. Since the effort exerted by the unfit
candidate is a strategic complement of the standard over the submodular region
and a strategic substitute over the supermodular region, the manager optimally
commits to soft and harsh standards, respectively, in those regions.

In the sequel, we let κ ⇒ S∗(κ) be the correspondence mapping κ ∈ (0,∞)

to the set of standards in a pure strategy SPNE, and S∗−1 its inverse.25 We say
that S∗ is weakly (strictly) increasing within a given interval I ⊆ (0,∞) if κ′ > κ,
s ∈ S∗(κ) and s′ ∈ S∗(κ′) imply that s′ ≥ s (s′ > s), for all κ, κ′ ∈ I. These
properties will play a role in our analysis.

3.3 Confirmativism and Conservatism

Below we study whether deviations from ex-post optimality of the standard un-
der commitment bias the manager towards or against the alternative he would
choose according to his prior beliefs only. The definitions of confirmativism and
conservatism (c.f., Li (2001)) are useful in our analysis:

Definition 2 Let (s∗P , θ
∗
u, θ
∗
q) be an equilibrium of Γ1. The manager is confirma-

tive at (s∗P , θ
∗
u, θ
∗
q) if κ > (<)1 and he is harsh (soft). The manager is conservative

at (s∗P , θ
∗
u, θ
∗
q) if κ > (<)1 and he is soft (harsh).

We also say that the manager is confirmative at κ if he is confirmative at
(s, θ∗u, θ

∗
q) for all s ∈ S∗(κ). Conservative and ex-post efficient at κ are defined

analogously. Finally, we say that the manager of a game Γ1 is uniformly confirma-
tive if he is confirmative for some priors and he is not conservative for any prior.
A uniformly conservative manager is defined in the same manner.

25We typically have a unique equilibrium in Γ1. Some of these games, however, have multiple
equilibria for some knife-edge values of the prior κ.
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Our results in the following sections reveal that optimal standards tend to be
confirmative when information undermining is stronger than information genera-
tion and conservative in the opposite case.

4 Economics of Information Undermining

It is instructive to start considering the case with no information generation.

4.1 Pure Information Undermining

A game in which the fit candidate’s readiness is exogenously given, is called a pure
information undermining game. In this game, denoted by Γ2, Θq = {θq} for some
θq ∈

(
θ∗u(ŝu), θ

]
, and the unfit candidate exerts effort to make her signal distribu-

tion more similar to the fit candidate’s signal distribution. In pure information
undermining games, just as in the solution of the classical statistical problem, the
equilibrium standard is increasing in the prior.

Lemma 3 Assume that F satisfies F.1-F.2 and Cu satisfies C.1 (i)-(iv). In ev-
ery game Γ2, S∗ is weakly increasing over (0,∞) and strictly increasing over
S∗−1(0, 1). Further, S∗(κ) = {0} if κ ∈ (0, κ] and S∗(κ) = {1} if κ ∈ [κ,∞).

Consider a SPNE standard, s∗P ∈ (0, 1). From (5) and (6), v and g(·, θ∗u(·), θq)
cross only once, and s∗P < ŝu if and only if v(s∗P ) > g(s∗P , θ

∗
u(s
∗
P ), θq):26 since

g(·, θ∗u(s∗P ), θq) is increasing, the ex-post optimal standard is higher than the equi-
librium standard. Similarly, s∗P > ŝu if and only if v(s∗P ) < g(s∗P , θ

∗
u(s
∗
P ), θq). The

left and right panel of Figure 2 show v and g(·, θ∗u(·), θq) from Example 2 (provided
below), for different values of θq.

Proposition 1 Assume that F satisfies F.1-F.2 and Cu satisfies C.1 (i)-(iv). For
any game Γ2, there exists κ̃U ∈ (κ, κ) such that

the manager is


ex-post efficient if κ ∈ (0, κ]

soft if κ ∈ (κ, κ̃U)

harsh if κ ∈ (κ̃U , κ)

ex-post efficient if κ ∈ [κ,∞).

(8)

26If dF (s,θ∗u(s))
ds ≤ 0 for some s ∈ (0, 1), then from (7), we have dV (s,θ∗u(s),θq)

ds > 0, and, hence,
s cannot be an equilibrium standard. All examples in the paper satisfy that v(s) > 0 for all
s ∈ (0, 1). There are, however, games such that v(s) < 0 within some intervals. For instance, in
the game Γ2, defined by F (s, θ) = θs10 + (1− θ)s, θq = 1, and Cu(θ) = 1

2θ
2 for all s ∈ [0, 1] and

θ ∈ Θ = [0, 1], we have that v(s) < 0 for all s ∈ (0.52, 0.65).
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Figure 2: Example 2. Left and right panel: v (solid line) and equilibrium
standards for each κ in the static game Γ0 (dashed line) for θq = 2

3
(left panel) and

θq = 1
3
(right panel). In the left panel, the equilibrium standards of Γ2 coincide

with v and in the right panel they correspond to the dashdotted line.

The proof of Proposition 1 builds upon Lemmata 1-3: by Lemma 3, relatively
low priors lead to relatively low standards in equilibrium. By Lemma 1, if the
equilibrium standard is relatively low, then the equilibrium standard and unfit
readiness pair (s∗P , θ

∗
u(s
∗
P )) is located in the submodular region of F , and, hence,

by part (i) of Lemma 2, the manager is soft.27 An analogous argument reveals
that relatively high priors lead to a harsh standard.

The manager is ex-post efficient if the evidence from the test is not valuable
because it cannot overturn prior beliefs; i.e., if κ ∈ (0, κ] ∪ [κ,∞); or, if the
evidence is valuable but a commitment to a standard is not; i.e., if κ = κ̃U and
S∗(κ̃U) = {ŝu}.28

As the unfit candidate’s cost of improving readiness increases, she becomes
less responsive to changes in the standard. In the Appendix we provide sufficient
conditions for relatively high costs Cu to generate a monotone pseudo likelihood
ratio function v (see Remark 4).29 If v is strictly increasing, then S∗ is single-valued
at all κ, and the cut-off prior for soft and harsh standards is equal to the likelihood
ratio function evaluated at the modularity-switch point, κ̂ := g(ŝu, θ

∗
u(ŝu), θq), as

illustrated in the left-panel of Figure 2. In contrast, if v is strictly decreasing over

27Since for game Γ2 we have dθ∗q (s)

ds = 0, the argument leading to Lemma 2, in this game,
yields that, if (s∗P , θ

∗
u, θq) is a SPNE of Γ2 with s∗P ∈ (0, 1), then the equilibrium standard is soft

(harsh) if and only if F is submodular (supermodular) at (s∗P , θ
∗
u(s∗P )).

28Example 2 below illustrates that the manager may not be ex-post efficient at κ̃U when
S∗(κ̃U ) is multivalued.

29In contrast, g(·, θ∗u(·), θq) is strictly increasing, as (5) and direct computations reveal.
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some intervals, the equilibrium standard varies discontinuously with changes in
κ.30 The following remark summarizes these observations.

Remark 2 Assume that F satisfies F.1-F.2 and Cu satisfies C.1 (i)-(iv). Con-
sider any game Γ2.

(i) If v(s) < (>)κ̂ for all s ∈ (0, ŝu) (s ∈ (ŝu, 1)), then κ̃U = κ̂. Therefore,
Proposition 1 (and Corollary 1 below) hold, mutatis mutandis, replacing κ̃U
by κ̂. Further, S∗(κ̂) = {ŝu} and thus, the manager is ex-post efficient at κ̂.

(ii) Suppose that v is strictly decreasing over some interval (s, s), with 0 < s <

s < 1. Then, there exists a prior κ ∈ (0,∞) and δ > 0 such that κ′ < κ < κ′′,
s′ ∈ S∗(κ′), and s′′ ∈ S∗(κ′′) imply that s′′ − s′ > δ.

A sufficient condition for part (i) is that v is strictly increasing. Part (ii)
implies that if v is non-monotone, candidates with arbitrarily similar priors may
be subject to very different standards. Our next example illustrates Proposition 1
and Remark 2.

Example 2 Consider F (z, θ) = θz2 +(1−θ)z for all z ∈ [0, 1] and θ ∈ Θ = [0, 1].
Assume θq ∈

(
1
4
, 1
]
. Thus, κ = 1 − θq and κ = 1 + θq. Since s̃(θ) = 1

2
for all

θ < θ, the modularity-switch point is ŝu = 1
2
. The unfit candidate’s cost function

is Cu(θ) = 1
2
θ2 for all θ ∈ Θ. Hence, θ∗u(s) = s(1 − s) for all s ∈ [0, 1]. By

Proposition 1, in the game Γ2, the manager is soft for κ ∈ (1− θq, κ̃U), harsh for
κ ∈ (κ̃U , 1 + θq), and ex-post efficient for κ ≤ 1− θq and κ ≥ 1 + θq.

For θq ∈
(

1
2
, 1
]
, direct computations reveal that v′(s) > 0 for all s ∈ (0, 1).

Therefore, by Remark 2, κ̃U = g(ŝu, θ
∗
u(ŝu), θq) = 1 and the manager is ex-post

efficient at κ̃U . For θq ∈
(

1
4
, 1

2

)
, v is non-monotone. In this case, κ̃U = 1 and

S∗(κ̃U) = {s1, s2}, where s1 and s2 are, respectively, the smallest and greatest
root of s(1 − s) =

θq
2
. The right-panel of Figure 2 shows how the standard varies

discontinuously with κ for θq = 1
3
, with s1 = 0.21 and s2 = 0.79. The manager is

not ex-post efficient at κ̃U —he is soft at (0.21, θ∗u, θ
∗
q) and harsh at (0.79, θ∗u, θ

∗
q).

4.2 Confirmativism and Conservatism under Information

Undermining

Commitment to a standard can involve a mix of confirmativism and conservatism
when the manager faces candidates with different priors. Proposition 1 and Defi-
nition 2 imply:

30At critical points of V (·, θ∗u(·), θq) located in intervals where v is decreasing, the manager’s
expected loss has a local maximum.
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Corollary 1 Assume that F satisfies F.1-F.2 and Cu satisfies C.1 (i)-(iv). For
every game Γ2 and κ 6= κ̃U , the manager is (i) confirmative at κ if and only if
κ < κ < min {1, κ̃U} or max {1, κ̃U} < κ < κ; and (ii) conservative at κ if and
only if min {1, κ̃U} < κ < max {1, κ̃U}.

A direct consequence of Corollary 1 is that, under assumptions F.1-F.2 and
C.1, in any game Γ2, (i) the manager is uniformly confirmative if and only if
κ̃U = 1 and (ii) the manager cannot be uniformly conservative.

If ds̃
dθ
> (<)0, as in Example 1, then κ̂ < (>)1;31 thus, if we also have that v is

strictly increasing, then the manager uses a mix of confirmative and conservative
standards (depending on his prior beliefs). The following example illustrates this.

Example 3 (Example 1 revisited). Assume that θq ∈ (1, 2]. Recall that g(z, θ, θq) =
θq
θ
zθq−θ for all z ∈ (0, 1) and θ ∈ Θ, and that (ŝu, θ

∗
u(ŝu)) = (e−1, 1). Thus,

κ̂ ≡ g(ŝu, θ
∗
u(ŝu), θq) = θqe

1−θq < 1.
For θq ∈ [1.28, 2], routine computations reveal that v′ > 0 over (0, 1). Thus,

part (i) of Remark 2 implies that κ̃U = κ̂. Therefore, the manager is confirmative
if and only if κ ∈ (0, κ̂) ∪

(
1,

θq
θ

)
and conservative if and only if κ ∈ (κ̂, 1), by

Corollary 1 and Remark 2. The manager is ex-post efficient if and only if κ = κ̂

or κ ∈
[
θq
θ
,∞
)
. The ranges of κ for which the manager is confirmative and

conservative for θq = 2 are illustrated in Figure 3.

If F has a neutral signal,32 s? (c.f., Milgrom (1981)), then κ̂ = 1. Thus, if v
is strictly increasing, then the manager does not use conservative standards. In
general, however, having a neutral signal is not sufficient for F to generate uniform
confirmativism for all cost function.33 A stronger condition that is sufficient is
quasi-symmetry: a cumulative distribution F is quasi-symmetric (QS) if Fθ(s, θ) =

Fθ(s
′, θ) for some θ ∈ Θ◦ implies that Fθ(s, θ′) = Fθ(s

′, θ′) for all θ′ ∈ Θ◦, for all
s, s′ ∈ [0, 1]. If F is QS, then it has a neutral signal s?, and for each standard
s < (>)s?, there is a standard sf (s) > (<)s? such that, for all cost function Cu

satisfying Assumption C.1, we have: θ∗u(s) = θ∗u(sf (s)) and V (s, θ∗u(s), θq; 1) =

31For all θ < θq, we have that dg(s̃(θ),θ,θq)

dθ =
∂g(s̃(θ),θ,θq)

∂s
ds̃(θ)
dθ . Since limθ→θq g(s̃(θ), θ, θq) = 1,

dg(s̃(θ),θ,θq)

dθ > (<)0 for all θ < θq implies that g(s̃(θ), θ, θq) < (>)1 for all θ < θq, which, in turn,
yields κ̂ < (>)1.

32We say that a distribution F has a neutral signal s? ∈ (0, 1) if f(s?, θ) = f(s?, θ′) for every
θ, θ′ ∈ Θ. The prior and posterior beliefs associated to a neutral signal are the same, regardless
of the readiness of candidates. If s? is the neutral signal of F , then the modularity-switch point
of any game Γ2 with distribution F is the neutral signal, ŝu = s?.

33It is not difficult to construct examples of distributions having a neutral signal, which nev-
ertheless, lead to conservatism for some cost functions and priors.
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Figure 3: Example 3. Equilibrium standards in Γ2 (solid line) and Γ0 (dashed
line) for θq = 2. In Γ2, the manager is conservative (confirmative) at the priors
highlighted in blue (red).

V (sf (s), θ
∗
u(sf (s)), θq; 1) for all s ∈ [0, 1] and θq ∈ (θ∗u(ŝu), θ] (for details, refer to

Claim 2 in the Appendix).
In economic terms, for QS distributions, both the structure of incentives of

the manager and the unfit candidate exhibit symmetries around the neutral signal
—the signal that conveys neither good nor bad news. These symmetries imply
S∗(1) = {s?} or s, sf (s) ∈ S∗(1) for some s < s?; and hence, by Lemma 3, κ̃U = 1.
Thus, we have proved the following:

Proposition 2 Assume F.1-F.2. If F is QS, then the manager of a game Γ2 is
uniformly confirmative for all cost function Cu satisfying Assumption C.1 (i)-(iv).

The policy insight of Proposition 2 is that, provided that the incentives symme-
tries around the neutral signal described above hold for F , then, regardless of the
cost structure of information undermining, at the margin, the decision favoured by
prior beliefs should be upheld. This partial disregard of the information contained
in the evidence desincentivizes effort by the low type agent. This holds whether
the prior favors the action preferred by the agent —in which case confirmativism
dictates to hire a fraction of candidates that otherwise would be rejected— or
whether the prior opposes to this action —in which case confirmativism dictates
to reject a fraction of candidates that otherwise would be hired.

In the Appendix we provide three simple properties on the functional form
of F that are sufficient for QS. Intuitively, F is QS whenever the candidate’s
marginal return to readiness, −Fθ(z, θ), is (i) independent of θ, for all z ∈ [0, 1],
(ii) multiplicatively separable, or (iii) plainly, symmetric around the neutral signal.
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For instance, consider the rotation distribution (RD) family, defined by f(z, θ) =

γ(θ)f1(z) + (1 − γ(θ))f0(z) for all (z, θ) ∈ [0, 1]2, where γ : Θ → [0, 1] is strictly
increasing, and the densities f0 and f1 satisfy d(f1/f0)/dz > 0. Any F in the
RD family (as in Example 2) is QS because it satisfies the second property.34

Therefore, the manager is uniformly confirmative by Proposition 2.

4.3 Dominating Information Undermining

Most qualitative aspects of the results that we derived for game Γ2 arise in game Γ1

when the manager’s strategic concerns are dominated by the effect of the standard
on the effort exerted by the unfit candidate. For instance, if returns to readiness
are decreasing and the fit candidate has a high natural readiness, she may benefit
little from exerting effort: if the marginal benefit from effort vanishes as θq → θ̄

(i.e., if Fθ(·, θ) = 0), then the strategic ratio goes to 0 and the manager becomes
soft for relatively low priors and harsh for relatively high priors (by Lemmata 1-
2). Then, the thesis of Proposition 1 for the pure information undermining model
remains valid in the general model. Additionally, if F is QS, the manager is
uniformly confirmative.

Our formal proof relies on the differentiability of v, which requires the cost
functions to be thrice differentiable, and slightly strengthening Assumption F.1,
ensuring that the derivatives of F , up to the third order, are bounded.

Assumption C. 2 C ′′i is continuously differentiable and C ′′i > 0 for i = u, q.

Assumption F.3 The third-order partial derivatives of F are continuous real
functions defined over D, and F (·, θ) is atomless with f > 0 for all θ ∈ Θ.

Let Γ1(θq) be the game Γ1 defined by a triplet (F,Cq, Cu), with θq ∈ Θ◦. In
the sequel, when convenient, we write explicitly the dependence of κ and κ on θq,
writing κ(θq) and κ(θq), respectively.

Proposition 3 Assume F.2-F.3, C.1-C.2, and Fθ(s, θ) = 0 for all s ∈ (0, 1).
Then, there exists θq ∈ Θ◦ such that for all θq ∈

(
θq, θ

)
, (i) there exists κ̃(θq) ∈

(κ(θq), κ(θq)) such that (8) holds in the game Γ1(θq), replacing κ̃U with κ̃(θq); and
(ii) if F is QS, then the manager is uniformly confirmative.

The proof shows how the arguments in the proofs of Propositions 1 and 2 for
the game Γ2, can be extended to Γ1, for large θq: as θq → θ, v approaches to f(·,θ)

du(·)

34A distribution in the RD family also satisfies the first property if γ is an affine transformation
of θ, as, for instance, in Example 2.
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and g(·, θ∗u(·), θ∗q(·)) approaches to g(·, θ∗u(·), θ); thus, v and g(·, θ∗u(·), θ∗q(·)) cross
only once over (0, 1) —just as in the analysis of game Γ2.

5 Economics of Information Generation

In this section, we consider the case in which the manager’s strategic concerns are
dominated by the effect of the standard on the fit candidate’s effort.35

5.1 Pure Information Generation

It is instructive to first analyze a pure information generation game, denoted by Γ3,
in which the unfit candidate is non-strategic: her readiness is exogenously given
by her natural readiness; i.e., θ∗u(s) = θ for all s ∈ [0, 1]. All other assumptions on
Γ1, laid out in Section 2, remain valid. Loosely speaking, Γ3 is the game obtained
from any game Γ1, as Cu(θ) goes to infinity for all θ > θ.

Let κC := infs∈(0,1)

{
F (s,θ∗q (s))

F (s,θ)

}
, κC := sups∈(0,1)

{
1−F (s,θ∗q (s))

1−F (s,θ)

}
, and κ̃G :=

g(ŝq, θ, θ
∗
q(ŝq)). In contrast to the pure information undermining scenario (Propo-

sition 1), here optimal standards are harsh for relatively low priors and soft for
relatively high priors.

Proposition 4 Assume that F satisfies F.1-F.2 and Cq satisfies C.1 (i)-(iv). For
any game Γ3, κC < κ̃G < κC and

the manager is



ex-post efficient if κ ∈ (0, κC)

harsh if κ ∈ (κC , κ̃G)

ex-post efficient if κ = κ̃G

soft if κ ∈ (κ̃G, κC)

ex-post efficient if κ ∈ (κC ,∞).

(9)

The proof builds on Lemmata 1, 2, and 7 (a lemma fairly analogous to Lemma 3
that is provided in the Appendix),36 in the same manner as the proof of Propo-

35One example is in-program selection in graduate school programs of subjects requiring spe-
cific skills or background (e.g., economics, mathematics, and engineering). Many schools use
qualifying or preliminary exams. Qualified candidates’ readiness for the exams can increase
substantially with their exerted effort, which is likely to be determined by approval cut-offs. In
contrast, unqualified candidates’ readiness may increase very little due to lack of skills or a weak
background (for an empirical analysis of the determinants of success in qualifying exams, thesis
completion, and research productivity in economics Ph.D. programs, see Grove and Wu (2007)).

36 Since for game Γ3 we have dθ∗u(s)
ds = 0, the argument leading to Lemma 2, in this game,

yields that, if (s∗P , θ, θ
∗
q ) is a SPNE of Γ3 with s∗P ∈ (0, 1), then the equilibrium standard is harsh

(soft) if and only if F is submodular (supermodular) at (s∗P , θ
∗
q (s∗P )).
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sition 1 builds on Lemmata 1-3. As this proof reveals, κC ≤ κ and κ ≤ κC :
information generation enlarges the set of priors for which testing is worthy.

In the pure information generation game, as in game Γ2, commitment can in-
volve a mix of confirmativism and conservatism when the manager faces candidates
with different priors. The deviations, however, are in the opposite direction.

Corollary 2 Assume that F satisfies F.1-F.2 and Cq satisfies C.1 (i)-(iv). For
all game Γ3 and κ /∈ {κC , κC} the manager is (i) conservative at κ if and only if
κC < κ < min{1, κ̃G} or max{1, κ̃G} < κ < κC, and (ii) confirmative at κ if and
only if min{1, κ̃G} < κ < max{1, κ̃G}.

A direct consequence of Corollary 2 is that under Assumptions F.1-F.2 and
C.1 (i)-(iv), for any Γ3, (i) the manager is uniformly conservative if and only if
κ̃G = 1 and (ii) the manager cannot be uniformly confirmative.

In contrast to the pure information undermining setting, in the pure infor-
mation generation model, the optimal standard associated to the cut-off prior is
always the modularity-switch point; that is, S∗(κ̃G) = {ŝq} (see the proof of Propo-
sition 4). This feature of the problem allows us to provide a sufficient condition
for uniform conservatism: if F has a neutral signal, then ŝq = s? and κ̃G = 1.

Corollary 3 Assume that F has a neutral signal and satisfies F.1-F.2. The man-
ager is uniformly conservative in game Γ3, for all natural readiness θq ∈ Θ◦ and
cost function Cq satisfying Assumption C.1 (i)-(iv).

5.2 Dominating Information Generation

The main qualitative features of game Γ3 arise in game Γ1, provided that the un-
fit candidate’s effort is sufficiently costly. For any game Γ1, defined by a triplet
(F,Cq(·; θq), Cu), we define a set of games indexed by λ ∈ [0, 1], and denoted
by Γ1(λ), where the only difference between Γ1 and Γ1(λ) is that the cost func-
tion of the unfit candidate in the latter is given by λ−1Cu, for all λ ∈ (0, 1],
whereas Γ1(0) corresponds to Γ3. Let κC(λ) := infs∈(0,1)

{
F (s,θ∗q (s))

F (s,θ∗u(s;λ))

}
and κC(λ) :=

sups∈(0,1)

{
1−F (s,θ∗q (s))

1−F (s,θ∗u(s;λ))

}
, where θ∗u(·;λ) is the best response of the unfit candidate

with cost function λ−1Cu for all λ ∈ (0, 1], and θ∗u(·; 0) = θ.

Proposition 5 Assume F.2-F.3 and C.1-C.2. Then, there exists λ > 0 such that
for all λ ∈ (0, λ), (i) there exists κ̃G(λ) ∈ (κC(λ), κC(λ)) such that (9) holds in
the game Γ1(λ), mutatis mutandis, replacing κ̃G, κC, and κC, with κ̃G(λ), κC(λ),
and κC(λ), respectively; and (ii) if F has a neutral signal, then the manager is
uniformly conservative.
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5.3 Undominated Effects and Multiple Cut-offs

For intermediate values of θq and λ, multiple soft-harsh or harsh-soft cut-offs may
arise —contrasting with the single cut-offs of dominating information undermining
and generation games. For instance, consider (i) F in the RD family, with γ(θ) =

θ
(
1− θ

2

)
for all θ ∈ Θ = [0, 1], and f0(z) = 1 and f1(z) = 2z for all z ∈ [0, 1];

and (ii) Cu(θ) = 1
2
θ2 for all θ ∈ [0, 1] and Cq(θ) = 1

2
(θ − θq)

2 for all θ ∈ [θq, 1]

and θq ∈ (0, 1). In the game Γ1(λ) with λ = 0.5, for θq ∈ (0.16, 0.23) a harsh-soft-
harsh-soft pattern arises as κ increases. Similarly, for θq ∈ (0.23, 0.42) we have
a harsh-soft-harsh pattern. Multiple cut-offs rule out uniform confirmativism or
uniform conservatism.

6 Welfare Analysis

Now we analyze the impact on welfare of the manager’s ability to commit. We
focus on Pareto dominance results, which we find for some configurations of dom-
inating information undermining and generation with suitable prior beliefs.

We compare equilibrium payoffs in the dynamic game Γ1 and the static game
Γ0. The manager is weakly better-off when he can commit. From the envelope
theorem, candidates are strictly better-off in an equilibrium of game Γ1 than in
an equilibrium of Γ0 —and hence Γ1 Pareto dominates Γ0— if and only if the
standard in the former is lower than in the latter.

We present two welfare results on the effect of commitment; the first deals with
the case in which the effect of standards on the unfit candidate’s effort dominates.

Corollary 4 Assume F.2-F.3, C.1-C.2, and Fθ(z, θ) = 0 for all z ∈ (0, 1). Then,
there exists θq ∈ Θ◦ satisfying that, for all θq ∈

(
θq, θ

]
, there exists κ̃(θq) ∈

(κ(θq), κ(θq)) such that, for all κ ∈ (κ(θq), κ̃(θq)) and SPNE (s∗P , θ
∗
u, θ
∗
q(·; θq)) of

Γ1(θq), there is a BNE of Γ0(θq) that is Pareto dominated by (s∗P , θ
∗
u, θ
∗
q(·; θq)).

Furthermore, if (1) also holds at (0, θ) and (1, θ) for all θ ∈ Θ◦, then θq ∈ Θ◦ can
be chosen so that the BNE of Γ0(θq) is unique.37

The first part follows from Propositions 1 and 3: as the marginal benefit of
effort vanishes for the fit candidate, the manager is soft for relatively low priors,
which coincides with lower standards in the dynamic game than in the static game.
Thus the manager’s ability to commit causes not only the manager, but also the
candidate (unfit or fit) to be better-off in the dynamic game.

37Information generation often prevents the uniqueness of the BNE; however, as the return to
effort vanishes with increases in θq, uniqueness is recovered.
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Now we turn our attention to the case in which the effect of the standard on
the fit candidate’s effort dominates.

Corollary 5 Assume F.2-F.3 and C.1-C.2. Then, there exists λ > 0 satisfying
that for all λ ∈ [0, λ), there exists κ̃G(λ) ∈ (κC(λ), κC(λ)) such that for all κ ∈
(κ̃G(λ), κC(λ)) and SPNE (s∗P , θ

∗
u(·;λ), θ∗q) of Γ1(λ), there is a BNE of Γ0(λ) Pareto

dominated by (s∗P , θ
∗
u(·;λ), θ∗q). Furthermore, if Fθ(z, θ) = 0 for all z ∈ (0, 1) and

(1) also holds at (0, θ) and (1, θ) for all θ ∈ Θ◦, then there exists θq
′ ∈ Θ◦ satisfying

that, for all θq ∈
(
θq
′, θ
]
, the BNE of Γ0(λ) is unique.

As in the previous result, Pareto dominance of commitment occurs when the
manager sets soft standards —which now arise for relatively high κ.

7 A Mechanism Design Approach

In this section, we consider an alternative response by the manager to the pre-
contractual informational asymmetries: designing a revelation mechanism.38 By
the Revelation Principle, we can focus on direct mechanisms that are truthful (i.e.,
that, in equilibrium, induce the candidate to reveal her true type). We restrict
attention to mechanisms without monetary transfers. Thus, the mechanisms that
we consider are described by a decision rule mapping each report (unfit or fit) to
probabilities of outright rejection, outright hiring, and using a test with approval
standard s to make the decision.

In the Appendix we show that, without loss of generality, the analysis can be
restricted to the class of mechanisms in which: (i) any candidate who claims to be
unfit is outright rejected with probability p ∈ [0, 1] and hired otherwise, and (ii)
any candidate who claims to be fit is asked to take a test. Thus, we only consider
truthful revelation mechanisms characterized by a duplet (s, p) ∈ [0, 1]2, where s
is the standard applied to a candidate reporting to be fit, and p is the probability
of outright rejection for a candidate reporting to be unfit.

The individual rationality constraint for the unfit candidate is redundant: re-
jecting the contract yields a loss of 1 ≥ p for all p ∈ [0, 1]. The same applies to
the fit candidate: 1 ≥ F (s, θq) ≥ F (s, θ∗q(s)) + Cq(θ

∗
q(s)) for all s ∈ [0, 1].

Incentive-compatibility requires p ≤ F (s, θ∗u(s)) + Cu(θ
∗
u(s)) and F (s, θ∗q(s)) +

Cq(θ
∗
q(s)) ≤ p for the unfit and fit candidate, respectively. The first restriction

is binding, as the expected loss to the manager is decreasing in p, whereas the
second is not, by Assumption C.1.

38We thank Roland Strausz for suggesting that we consider a mechanism design approach.
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Let VM(s) := F (s, θ∗q(s))−κ (F (s, θ∗u(s)) + Cu(θ
∗
u(s))) for all s ∈ [0, 1]. Thus, if

(sM , pM) is an optimal mechanism for the manager, then sM solves mins∈[0,1] VM(s)

and pM = F (sM , θ
∗
u(sM)) + Cu(θ

∗
u(sM)). Define

κM := inf
s∈(0,1)

{
F (s, θ∗q(s))

F (s, θ∗u(s)) + Cu(θ∗u(s))

}
and κM := sup

s∈(0,1)

{
1− F (s, θ∗q(s))

1− F (s, θ∗u(s))− Cu(θ∗u(s))

}
,

and let
vM(s; θ) :=

dq(s)

f(s, θ)
(10)

for all s ∈ [0, 1] and θ ∈ Θ.
Let κ ⇒ S∗M(κ) be the correspondence mapping κ ∈ (0,∞) to the set of

standards applied to candidates reporting to be fit in an optimal mechanism.39

Proposition 6 Assume F.1-F.2 and C.1. The correspondence S∗M is weakly in-
creasing over (0,∞).40 If (sM , pM) is an optimal mechanism, then, (i) (sM , pM) =

(0, 0) for all κ < κM , (sM , pM) = (s, F (s, θ∗u(s)) +Cu(θ
∗
u(s))) for all κ ∈ (κM , κM)

for some s ∈ (0, 1) satisfying vM(s; θ∗u(s)) = κ, and (sM , pM) = (1, 1) for all
κ > κM ; and (ii) the manager strictly prefers the optimal mechanism to the equi-
libria of Γ1 for all κ ∈ (κM , κM).

The manager is better-off using the optimal mechanism than simply commit-
ting to a standard, for all priors leading to an interior equilibrium standard, due to
the higher probability of rejecting the unfit candidate. The proof of Proposition 6
reveals that, as in the pure information generation scenario of the game in which
the manager commits to a standard, the optimal mechanism enlarges the range of
priors for which screening is worthy.

Candidates are better-off with the revelation mechanism than under simple
commitment to a standard if sM < s∗P and worse-off if sM > s∗P . Provided that
the pseudo likelihood ratio function of Γ1, v, and vM(·; θ∗u(·)) are both strictly
increasing, sM < s∗P if vM(s∗P ; θ∗u(s

∗
P )) > v(s∗P ), for all κ ∈ S∗−1

M (0, 1). Similarly,
sM > s∗P if vM(s∗P ; θ∗u(s

∗
P )) < v(s∗P ).

Functions v and vM(·; θ∗u(·)) differ in the same manner that v and g(·, θ∗u(·), θq)
differ in the pure information undermining setup: by the presence of the term
Fθ(·, θ∗u(·))dθ

∗
u(·)
ds

in the denominator of v. Thus, if the problem is sufficiently well-
behaved, so that both functions are well-defined in [0, 1],41for all s ∈ (0, 1) we have

39As in the game in which the manager simply commits to a hiring standard (see Section 4.1),
the possibility of multiple equilibria for some knife-edge values of κ, in general, cannot be ruled
out.

40Adopting the definition of weakly increasing correspondence introduced in Section 3.
41See the discussion in footnote 26.
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v(s) > (=, <)vM(s; θ∗u(s)) if s < (=, >)ŝu.
A sufficient condition for both v and vM(·; θ∗u(·)) to be well-defined and strictly

increasing is that the fit candidate’s natural readiness and the unfit candidate’s
marginal cost are large. Given a triplet (F,Cu, Cq), let Γ1(θq, λ) be the game in
which the manager commits to a standard, the fit candidate has a natural readiness
θq, and the unfit candidate has a cost function λ−1Cu if λ ∈ (0, 1], or the game
Γ3 if λ = 0. Also, let ŝu(λ) be the modularity-switch point of the unfit candidate
with cost function λ−1Cu for all λ ∈ (0, 1], and κM(θq, λ) and κM(θq, λ), defined
as κM and κM , respectively, but with θ∗u(·;λ) instead of θ∗u, for all θq ∈ Θ◦ and
λ ∈ [0, 1].

Proposition 7 Suppose that the triplet (F,Cu, Cq) satisfies Assumptions F.2-F.3,
C.1-C.2, Fθ(z, θ) = 0 for all z ∈ (0, 1), and condition (1) also holds at (0, θ) and
(1, θ) for all θ ∈ Θ◦. Consider the family of games Γ1(θq, λ) with θq ∈ Θ◦ and λ ∈
[0, 1]. Then, there exist θq ∈ Θ◦ and λ ∈ (0, 1) such that θq ∈ (θq, θ) and λ ∈ (0, λ)

imply that both the fit and unfit candidate prefer commitment to a standard over
the optimal mechanism if and only if κ ∈ (κM(θq, λ), v(ŝu(λ))) and the optimal
mechanism over commitment to a standard if and only if κ ∈ (v(ŝu(λ)), κM(θq, λ)).

Computations analogous to those leading to Proposition 1 yield that standards
in the commitment setup are lower than in the optimal mechanism for low priors
and higher for high priors. This is illustrated in Figure 4 for the example described
in Section 5.3.42 The economics behind Proposition 7, however, is very different
from that in Proposition 1: with the optimal mechanism, at the margin, the
manager ignores the effect of the standard on the unfit candidate’s effort because,
since pM = F (sM , θ

∗
u(sM)) + Cu(θ

∗
u(sM)), the optimal menu offsets changes in

F (·, θ∗u(·)) with changes in Cu(θ∗u(·)) (which, at the margin, are the same).
By Propositions 6 and 7, we have that under the assumptions of Proposition 7,

the optimal mechanism Pareto Dominates the game Γ1(θq, λ) with θq ∈ (θq, θ) and
λ ∈ (0, λ) if and only if the prior probability that the candidate is unfit is relatively
high (κ ∈ (v(ŝu(λ)), κM(θq, λ))).

42Under the assumptions of Proposition 7, if F has a neutral signal and information under-
mining (generation) dominates in Γ1, then, the manager’s deviations from the standard in the
static game are in opposite (the same) direction under commitment and the optimal mechanism.
When they are in the same direction, the deviation under the optimal mechanism is larger than
under commitment, because of the buffering effect of the unfit candidate’s effort in the latter.

25



0 0.2 0.4 0.6 0.8 1
0.6

0.8

1

1.2

1.4

s

κ

g( · , θ∗q ( · ), θ∗u( · ))
v( · )

vM ( · ; θ∗u( · ))

Figure 4: Example from Section 5.3 with λ = θq = 0.5: equilibrium standard in
Γ1 (solid line) and Γ2 (dotted line), and the optimal mechanism standard (dashed
line), for each prior κ.

8 Discussion

Optimal standards trade off classic statistical decision-making for management of
information manipulation. Strategic complementarity between readiness and the
standard develops in the submodular region of the domain of the signal distribution
—i.e., for low standards that arise in equilibrium when agents have good prior
prospects. Analogously strategic substitutability arises for agents with bad prior
prospects. Thus, the decision maker often sets confirmative standards in problems
dominated by information undermining and conservative standards in problems
dominated by information generation. A revelation mechanism allows the decision
maker to obtain a higher expected payoff than simple commitment to a standard.

Information manipulation by interested parties is ubiquitous. An application
often discussed in the literature is the drug approval process by regulatory agencies
such as the FDA or the ABPI (see, e.g., Li (2001), Henry and Ottaviani (2019)).
As Li (2001) observes, “most of the evidence concerning effectiveness of a new
drug is provided by its producer, not by the panelists.” Pharmaceutical companies
engage in a range of information manipulation practices, including hiding data,
cherry-picking variables, manipulating experimental conditions, etc. (see, e.g.,
Goldacre (2014)). In the light of our results, a question that arises is whether
regulatory agencies’ approval standards are tilted in the right direction to manage
information manipulation incentives.

For instance, our model predicts that, when information undermining is dom-
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inant, drugs with good prospects (low κ) should be subject to soft approval stan-
dards; namely, drugs with ex-post evidence marginally-negative expected values
should be approved.43 A natural choice for drugs having good prospects are those
in the Breakthrough-Drug Designation (BDD) program of the FDA. As Darrow
et al. (2018) show, trials following the nomination of many of the drugs in the
BDD program have confirmed their good prospects, producing good results, and
have been approved by the FDA. Nevertheless, trial results for some of the drugs
in the program have shown little efficacy, even failing to meet customary stan-
dards (see Darrow et al. (2018), p. 1449). Yet, a number of such drugs have been
approved by the FDA. Propositions 1 and 3 suggest that softening the standard
has a positive side-effect of discouraging information undermining.44 An empirical
study of these issues is a subject of interest for future research.

As psychological screening has become widespread,45 practitioners have em-
phasized the importance of assessing it properly (see, e.g., Dattner (2013), Caska
(2020)). The assessment of screening tests, not only needs to take into account
their performance in terms of wrongful hiring/rejection, but also, their effect on
test-preparation incentives. While the performance of selection procedures is de-
termined by many factors, practitioners should bare in mind the insights of our
analysis. In particular, protocols more involved than plain tests, as those de-
scribed in our mechanism design approach, may be advantageous for managers’
hiring procedures.

Finally, in our analysis of commitment, the decision maker only uses standards
of evidence as a tool to manage information manipulation. As argued above (in
footnote 21), the use of approval standards in applications is widespread due to
practical reasons. Our mechanism design approach illustrates that managing in-
formation manipulation can further benefit from other incentive schemes in the
economics toolkit. Other possible approaches include mechanisms with trans-
fers, manager’s randomizations (probabilities of outright hiring/rejection), and
hiring/rejection sets that are not monotone (i.e., not determined by a single stan-
dard) for both the commitment setup and revelation mechanisms. We leave for
future research the analysis of these variations of the problem.

43Recall from footnote 15 that κ can be interpreted as capturing the weights of losses associated
with wrong rejection and wrong acceptance.

44The BDD scheme was conceived to provide a “fast-track” approval process. The softening of
standards that we refer to, however, is not related to the “fast-track” aspect of the program, but
exclusively to the evidence documented in Darrow et al. (2018) on the approval of drugs that
showed little efficacy in trials run after the drug was granted the designation.

45See SHL 2018 Global Assessment Trends Report https://www.shl.com/en/assessments/
trends/.
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Appendix: Proofs and Ancillary Material

Proofs and Ancillary Material of Section 2

Under Assumption F.2, −Fθ(z, θ) := −∂F (z,θ)
∂θ

> 0 for all z ∈ (0, 1) and θ < θ.

Claim 1 Assume F.2. Then, Fθ(z, θ) < 0 for all z ∈ (0, 1) and θ < θ.

Proof. For all z ∈ (0, 1) and θ < θ, we have F (z, θ) =
´ z

0
eln f(z′,θ)dz′. Thus,

Fθ(z, θ) =

ˆ z

0

eln f(z′,θ) 1

f(z′, θ)

∂f(z′, θ)

∂θ
dz′

=

ˆ z

0

eln f(z′,θ)

[
1

f(0, θ)

∂f(0, θ)

∂θ
+

ˆ z′

0

∂ 1
f(z′′,θ)

∂f(z′′,θ)
∂θ

∂z′′
dz′′
]
dz′

=

ˆ z

0

f(z′, θ)

[
1

f(0, θ)

∂f(0, θ)

∂θ
+

ˆ z′

0

∂2 ln f(z′′, θ)

∂z′′∂θ
dz′′
]
dz′. (11)

Since Assumption F.2 implies the MLRP, we know that Fθ(z, θ) ≤ 0 for all z ∈
(0, 1) and θ < θ. We now show that this inequality is indeed strict. If (11) is equal
to zero for some z ∈ (0, 1) and θ < θ, then Fθ(z′, θ) > 0 for all z′ ∈ (z, 1), as the
term in the square brackets is increasing in z′ and equals zero itself at most once.
But Fθ(z′, θ) > 0 contradicts FOSD (and hence the MLRP).

Assumptions F.1-F.2 guarantee the existence of a function s̃ : [θ, θ) → (0, 1)

separating the regions of D◦ where F is submodular and supermodular.

Remark 3 Assume F.1-F.2. For all θ < θ there exists s̃(θ) ∈ (0, 1) such that

∂f(z, θ)

∂θ


< 0 if z < s̃(θ)

= 0 if z = s̃(θ)

> 0 if z > s̃(θ)

(12)

for all z ∈ (0, 1).46

Let m(z, θ) := 1
f(z,θ)

∂f(z,θ)
∂θ

for all (z, θ) ∈ D.

Proof. By Claim 1, for all z ∈ (0, 1) and θ < θ, we have that
´ z

0
∂Fθ(z′,θ)

∂z
dz′ =

Fθ(z, θ) < 0, where the equality follows from the fact that Fθ(0, θ) = 0 for all
θ < θ. Thus there is z′ ∈ (0, z) such that ∂Fθ(z′,θ)

∂z
< 0; and similarly, there is

z′′ ∈ (z, 1) such that ∂Fθ(z′′,θ)
∂z

> 0. Therefore, m(z′, θ) < 0 and m(z′′, θ) > 0, and
by continuity of m, there is z′′′ ∈ (z′, z′′) such that m(z′′′, θ) = 0.

46We allow for Fθ(z, θ) = 0 for all z ∈ [0, 1], thus, it is possible that ∂f(z,θ)∂θ = 0 for all z ∈ [0, 1].
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Indeed, z′′′ is the unique root of m(·, θ) = 0 because Assumptions F.1 and F.2
imply that m(·, θ) is strictly increasing for all θ < θ:

∂m(z, θ)

∂z
=
∂2 ln f(z, θ)

∂θ∂z
> 0

for all z ∈ (0, 1) and θ < θ. Thus, θ 7→ s̃(θ) maps θ to the unique root of
m(·, θ) = 0, for all θ < θ.

Let s∗ : Θ × (0,∞) → [0, 1] be the function mapping readiness profiles and
priors (θ, κ) to the ex-post optimal standard ; i.e., the standard minimizing the
manager’s expected loss, given the readiness pair θ. Define the likelihood ratio
function g : [0, 1]×Θ→ R∪ {∞} with g(s,θ) := f(s,θq)

f(s,θu)
for all (s,θ) ∈ [0, 1]×Θ.

By MLRP, g(·,θ) is strictly increasing for all θ ∈ Θ. By F.1, sign
{
∂V (s,θ)
∂s

}
=

sign {g(s,θ)− κ} for all (s,θ) ∈ (0, 1) × Θ. Thus, for all θ ∈ Θ, the optimal
standard is

s∗(θ;κ) =


0 if 0 < κ ≤ g(0,θ)

s∗θ,κ if g(0,θ) < κ < g(1,θ)

1 if g(1,θ) ≤ κ,

(13)

where s∗θ,κ is defined by g(s∗θ,κ,θ) ≡ κ for all κ ∈ (g(0,θ), g(1,θ)). Since g(·,θ) is
strictly increasing, s∗(θ; ·) is weakly increasing for all θ ∈ Θ.
Proof of Lemma 1. By the Implicit Function Theorem, s̃ is continuous, with
ds̃(θ)
dθ

= −∂m(s̃(θ),θ)
∂θ

(
∂m(s̃(θ),θ)

∂s

)−1

for all θ < θ. In particular, ∂m(s̃(θ),θ)
∂s

> 0 and

hence, ds̃(θ)
dθ

is finite for all θ < θ, by Assumptions F.1 and F.2.
Let ŝu be a global maximizer θ∗u. From Assumption C.1, ŝu ∈ (0, 1), and

θ∗u(ŝu) > θ. Further, dθ∗u(ŝu)
ds

= 0 and hence, by (5), s̃(θ∗u(ŝu)) = ŝu. Indeed,
ŝu is the unique maximizer of θ∗u: if ŝ′u 6= ŝu is another maximizer of θ∗u, then
s̃(θ∗u(ŝu)) = ŝ′u, contradicting that s̃ is a function.

Suppose there exists s′ 6= ŝu such that s̃(θ∗u(s′)) = s′. If s′ is not a local extreme
of θ∗u, then s′ is a tangency point between θ∗u and the inverse of s̃.47 But this
would imply 0 = dθ∗u(s

′)/ds = (ds̃(θ∗u(s
′))/dθ)−1, which leads to a contradiction

because ds̃(θ)
dθ

is finite for all θ < θ. Furthermore, s′ cannot be a local minimum
of θ∗u as this would imply that for some θ > θ∗u(s

′), there are s′′ < s′ < s′′′ with
θ∗u(s

′′) = θ∗u(s
′′′) = θ and such that dθ∗u(s′′)/ds < 0 and dθ∗u(s′′′)/ds > 0, implying

s̃(θ) < s′′ < s′′′ < s̃(θ), a contradiction. Therefore s′ can only be a local maximum
of θ∗. But this would imply that there is a local minimum of θ∗u in the interval
(min{s′, ŝu},max{s′, ŝu}), contradicting that θ∗u does not have local minima in

47The inverse of s̃ then could be defined over an open interval containing s′ because the
tangency occurring under the working hypothesis would imply that ds̃(θ∗u(s′))/dθ 6= 0.
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(0, 1). We conclude that θ∗u intersects s̃ only once at (ŝu, θ
∗
u(ŝu)); hence, the thesis

of the lemma follows immediately. �
Formal analysis of data manipulation processes.
Sample cherry-picking. A pharmaceutical company runs an experiment aiming
to get a new drug approved by a regulatory agency. The observed effect in the
experiment is x = θ + u, where u is independent of the effectiveness of the drug
and is normally distributed, u ∼ N(0, σ2). The average observed effect of an
ineffective drug, θu, is 0 if the subjects’ average age in the experiment is the
same as the average age of the target population of the drug, a. On average, the
result of the experiment is decreasing on the average age of the individuals in the
sample, a, according to a quadratic function, θu = (a− a)2 for all a ∈ [0, a]. The
average performance in the experiment of an effective drug is uniformly superior
for all ages by θq > 0. The costs of controlling the average age in the sample
are 1

2
c(a − a)4, with c > 0. The regulatory agency’s expected loss is given by

(2). Although the range of x is R, using a suitable transformation, we obtain a
random variable whose distribution, along with the cost function of controlling
the subjects’ average age, define a problem that satisfies Assumptions F.1-F.2 and
C.1.

From the above cost structure, we obtain Cu(θu) = 1
2
cθ2
u for all θu ∈ [0, a2].

Similarly, Cq(θq) = 1
2
c(θq − θq)2 for all θq ∈ [θq, θq + a2].

Let z := 1
π

arctanx+ 1
2
∈ [0, 1]. Then,

F (z, θ) =
1

σ
√

2π

ˆ z

0

e
− 1

2

(
tan y(z′)−θ

σ

)2
π(1 + tan2 (y(z′)))dz′,

where y(z′) := π
(
z′ − 1

2

)
for all z′ ∈ [0, 1], and

∂2F (z, θ)

∂θ2
=

1

σ3
√

2π

ˆ z

0
e
− 1

2

(
tan y(z′)−θ

σ

)2
π(1 + tan2

(
y(z′)

)
)

[(
tan y(z′)− θ

σ

)2

− 1

]
dz′.

Direct computations show that F satisfies Assumptions F.1-F.2. Furthermore, for
each θ, ∂2F (z,θ)

∂θ2
attains its minimum at z(θ) := 1

π
arctan(σ + θ) + 1

2
; and direct

computations reveal that ∂2F (z(θ),θ)
∂θ2

does not depend on θ.48 Thus, since C ′′u =

C ′′q = c, Assumption C.1 holds if c+ ∂2F (z(0),0)
∂θ2

> 0.
Hidden data disposal. Consider a pharmaceutical company that runs experiments
to get a new drug approved by a regulatory agency. The outcome of an experiment,

48It can be shown that ∂F 2(z(θ),θ)
∂θ2 is equal to σ−2 times the probability that x < θ + σ, times

the conditional expected value of (x−θ)2
σ2 − 1 given x < θ + σ (which does not depend on θ as

changes in θ only shift the distribution of x to the left or right).
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z ∈ [0, 1], is distributed according to the atomless distribution function H with
density h > 0, if the drug is ineffective, and (for simplicity) according to the
distribution H2, if the drug is effective. The company can run additional tests,
and select the best outcome realization. The cost of running n tests (in total) is
1
2
c(n− 1)2 for some c > 0 and at least one test has to be run. The discreteness of

the number of tests (which determines readiness in this setup) prevents this model
from satisfying Assumptions F.1-F.2 and C.1. Nevertheless, it is easy to show that
the economically substantial properties of our model are satisfied in this setup.
Thus, the core qualitative aspects of our analysis, with suitable adjustments to
account for the discreteness of readiness, are featured within this setup as well.

Proofs and Ancillary Material for Section 3

Static Game. Now we consider the imperfect information static game Γ0 between
the manager and the candidate, who simultaneously choose the standard and
readiness, respectively. Their expected loss are given by (2) and (3), respectively.
A pure strategy Bayesian Nash equilibrium of Γ0 is a triplet (s∗NE, θuNE, θqNE) ∈
D×Θq, with s∗NE = s∗(θuNE, θqNE;κ), θuNE = θ∗u(s

∗
NE), and θqNE = θ∗q(s

∗
NE), and

hence, satisfying equations (13) and (4).
There exists a BNE with s∗NE ∈ (0, 1) and, hence, g(s∗NE, θ

∗
u(s
∗
NE), θ∗q(s

∗
NE)) =

κ, for all κ ∈
(
infs∈(0,1) g(s, θ∗u(s), θ

∗
q(s)), sups∈(0,1) g(s, θ∗u(s), θ

∗
q(s))

)
. On the other

hand, (0, θ, θq) is the unique BNE if κ < infs∈(0,1) g(s, θ∗u(s), θ
∗
q(s)), and (1, θ, θq) is

the unique BNE if κ > sups∈(0,1) g(s, θ∗u(s), θ
∗
q(s)).

Proof of Lemma 2. Observe that

dV(s)

ds
= f(s, θ∗u(s))

(
g(s, θ∗u(s), θ∗q(s))− κ

)
+ Fθ(s, θ

∗
q(s))

dθ∗q(s)

ds
− κFθ(s, θ∗u(s))

dθ∗u(s)

ds

= f(s, θ∗u(s))
(
g(s, θ∗u(s), θ∗q(s))− κ

)
+ Fθ(s, θ

∗
u(s))

dθ∗u(s)

ds
(r(s)− κ)

for all s ∈ (0, 1)\{ŝu}. The manager is soft (harsh) in an equilibrium with standard
s∗P ∈ (0, 1) if g(s∗P , θ

∗
u(s
∗
P ), θ∗q(s

∗
P )) < (>)κ. Thus, parts (i)-(ii) and (iii)-(iv) follow

from the first and second equalities, respectively, using Claim 1 and Remark 1.49

�
49A more intuitive proof for parts (i) and (ii) was provided in the text.
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Proofs and Ancillary Material of Section 4

Proof of Lemma 3. We prove that S∗ is weakly increasing using an indirect
argument. Consider κ′ > κ, s ∈ S∗(κ), and s′ ∈ S∗(κ′). Then,

F (s, θq)− κF (s, θ∗u(s)) ≤ F (s′, θq)− κF (s′, θ∗u(s
′))

F (s′, θq)− κ′F (s′, θ∗u(s
′)) ≤ F (s, θq)− κ′F (s, θ∗u(s)).

Adding these inequalities yields (κ′ − κ) (F (s, θ∗u(s))− F (s′, θ∗u(s
′))) ≤ 0, which

implies F (s, θ∗u(s)) ≤ F (s′, θ∗u(s
′)). Now suppose s′ < s; since densities are strictly

positive, we have F (s′, θq) < F (s, θq). Thus, F (s′, θq)−κF (s′, θ∗u(s
′)) < F (s, θq)−

κF (s, θ∗u(s)), contradicting that s is the equilibrium standard for κ.
Now we show that S∗(κ) = {0}. Notice that V (0, θ, θq;κ) < V (s, θ, θq;κ) ≤

V (s, θ∗u(s), θq;κ), for all s > 0, where the strict inequality follows from the fact
that s∗(θ, θq;κ) = 0, and the weak inequality follows from FOSD.

Since S∗ is weakly increasing, we conclude S∗(κ) = {0} for all κ ∈ (0, κ]. An
analogous argument proves that S∗(κ) = {1} for all κ ∈ [κ,∞).

Finally, we show that S∗ is strictly increasing over S∗−1(0, 1). Notice that for
all κ ∈ S∗−1(0, 1), s ∈ S∗(κ) only if the right hand side of (7) is equal to 0. Thus,
s can only be an element of S∗(κ) for only one κ ∈ S∗−1(0, 1). �
Proof of Proposition 1. For any game Γ2, let κ̃U := sup{κ ∈ (0,∞) :

supS∗(κ) ≤ ŝu}, where ŝu is the modularity-switch point.
Part 1. We first prove that κ̃U < κ:

Case 1. κ =∞: For any κ ∈ (0,∞), we have that

min
s∈[0,ŝu]

{
V (1, θ, θq;κ)− V (s, θ∗u(s), θq;κ)

}
= min

s∈[0,ŝu]

{
1− F (s, θq)− κ(1− F (s, θ∗u(s)))

}
.

This expression is negative for a large enough κ◦, thus s /∈ S∗(κ◦) for all s ∈ [0, ŝu].
Since S∗ is weakly increasing (Lemma 3), s /∈ S∗(κ′) for all s ∈ [0, ŝu] and κ′ > κ◦.
Thus, κ̃U ≤ κ◦ <∞.

Case 2. κ < ∞: From Lemma 3, S∗(κ) = {1}. In particular, V (1, θ, θq;κ) <

mins∈[0,ŝu] V (s, θ∗u(s), θq;κ). Notice that V (s, θ, θq; ·) is continuous over (0,∞),
for all (s, θ) ∈ [0, 1] × Θ, and so it is mins∈[0,ŝu] V (s, θ∗u(s), θq; ·), by the Max-
imum Theorem. Thus, for small enough δ > 0, we have V (1, θ, θq;κ − δ) <

mins∈[0,ŝu] V (s, θ∗u(s), θq;κ − δ). Therefore, supS∗(κ − δ) > ŝu and since S∗ is
weakly increasing (Lemma 3), we conclude that κ̃U ≤ κ− δ < κ.
Part 2. Now we show that the manager is ex-post efficient for all κ ∈ [κ,∞):
From Lemma 3, S∗(κ) = {1} for all κ ≥ κ. Recall that θ∗u(1) = θ. From (13),
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s∗(θ, θq;κ) = 1 for all κ ≥ κ. Thus, the manager is ex-post efficient for all κ ≥ κ.
Part 3. Now we show that the manager is harsh for all κ ∈ (κ̃U , κ): consider any
κ ∈ (κ̃U , κ) and s ∈ S∗(κ); since S∗ is weakly increasing over (0,∞) and strictly
increasing over S∗−1(0, 1) (by Lemma 3), we have that s ∈ (ŝu, 1]. Lemmata 1 and
2 (see footnote 27) imply that the manager is harsh if s ∈ (ŝu, 1). And if s = 1

the manager is harsh because s∗(θ, θq;κ) < 1 for κ < κ.
Noting that κ̃U = inf{κ ∈ (0,∞) : inf S∗(κ) ≥ ŝu}, an argument analogous

to that of Part 1 shows that κ̃U > κ. Similarly, arguments analogous to those in
Parts 2 and 3 yield that the manager is ex-post efficient for all κ ∈ (0, κ] and soft
for all κ ∈ (κ, κ̃U), respectively. �

Remark 4 Assume that F satisfies F.2 and F.3, Cu satisfies Assumption C.1
(i)-(iv) and C.2, and (1) also holds at (0, θ) and (1, θ) for all θ ∈ Θ◦. Then, there
exists λ > 0 such that the game Γ2 defined by F and the cost function λ−1Cu has
a strictly increasing pseudo likelihood ratio function v, for all λ ∈ (0, λ).

Proof. Let θ∗u(·;λ) be the unfit candidate’s best response for the cost function
λ−1Cu if λ > 0 and θ∗u(·;λ) = θ if λ = 0. If λ > 0, the derivative of F (·, θ∗u(·;λ)) is

du(s;λ) := f(s, θ∗u(s;λ))−Fθ(s, θ∗u(s;λ))
∂f(s, θ∗u(s;λ))

∂θ

(
C ′′u(θ∗u(s;λ))

λ
+
∂2F (s, θ∗u(s;λ))

∂θ2

)−1

for all s ∈ [0, 1]. Since f(·, θ) > 0, by the Maximum Theorem, there exists λ1 > 0

such that for all λ ∈ (0, λ1), we have that mins∈[0,1] {du(s;λ)} > 0. Thus, for all
λ ∈ (0, λ1), v′ > 0 is equivalent to

min
s∈[0,1]

{
1

f(s, θq)

∂f(s, θq)

∂s
− 1

du(s;λ)

d (du(s;λ))

ds

}
> 0.

Indeed,

lim
λ→0

min
s∈[0,1]

{
1

f(s,θq)

∂f(s,θq)

∂s
− 1

du(s;λ)
d(du(s;λ))

ds

}
= min

s∈[0,1]

{
1

f(s,θq)

∂f(s,θq)

∂s
− 1

f(s,θ)
∂f(s,θ)
∂s

}
> 0,

where the inequality is guaranteed by (1). Thus, there exists λ > 0 such that for
all λ ∈ (0, λ), we have v′ > 0.
Proof of Remark 2. Part (i) is direct, so we proceed directly to prove part (ii):

Case 1. Suppose du(s) > 0 over (0, 1). For all s ∈ (s, s), if s is a critical
point of V (·, θ∗u(·), θq), then s is a local maximum and hence, s /∈ S∗(κ) for any
κ ∈ (0,∞). Let κ∗ := sup{κ ∈ (0,∞) : supS∗(κ) ≤ s} and κ∗ := inf{κ ∈ (0,∞) :

inf S∗(κ) ≥ s}.
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We observe that κ∗ = κ∗: if κ∗ < κ∗, then for all κ ∈ (κ∗, κ∗) we have that
S∗(κ) ∩ (s, s) 6= ∅, contradicting that s ∈ (s, s) implies that s /∈ S∗(κ) for any
κ ∈ (0,∞). On the other hand, if κ∗ > κ∗, then for any κ ∈ (κ∗, κ∗), supS∗(κ) ≤ s

and inf S∗(κ) ≥ s, a contradiction.
Thus, for all κ′ < κ∗ we have supS∗(κ′) ≤ s, and for all κ′′ > κ∗ we have

inf S∗(κ′′) ≥ s. Hence the thesis holds for κ = κ∗ and all δ ∈ (0, s− s).
Case 2. Suppose du(s) ≤ 0 for some s ∈ (0, 1). Then, for all κ ∈ (0,∞), we

have dV (·, θ∗u(·), θq;κ)/ds > 0 over (s − ε, s + ε) for some ε ∈ (0,min{s, 1 − s}).
Thus, s /∈ S∗(κ) for any κ ∈ (0,∞). Analogously to the argument in Case 1, we
can define κ′∗ := sup{κ ∈ (0,∞) : supS∗(κ) ≤ s − ε} and κ′∗ := inf{κ ∈ (0,∞) :

inf S∗(κ) ≥ s + ε}. The rest of the argument is analogous to Case 1, leading to
the statement that thesis holds for κ = κ′∗ and all δ ∈ (0, 2ε). �
Quasi-Symmetric Distributions. For each θ ∈ Θ◦, we implicitly define the
function s 7→ sf (·, θ) by Fθ(s, θ) = Fθ(sf (s, θ), θ), with sf (s, θ) 6= s for all s ∈
[0, 1]\{s̃(θ)}, and sf (s̃(θ), θ) = s̃(θ). The continuity of Fθ, Fθ(0, θ) = Fθ(1, θ) = 0,
and ∂Fθ(s,θ)

∂s
< (>)0 for all s ∈ (0, s̃(θ)) (s ∈ (s̃(θ), 1)) guarantee that sf is well

defined. If sf (s, θ) does not depend on θ, then F is QS.

Claim 2 Assume F.1-F.2. If F is QS, then: (i) F has a neutral signal s?, (ii)
θ∗u(s) = θ∗u(sf (s)) for all s ∈ (0, 1) and all cost function Cu satisfying conditions
(i)-(iv) in Assumption C.1, (iii) F (s, θ)− F (sf (s), θ) = F (s, θ′)− F (sf (s), θ

′) for
all θ, θ′ ∈ Θ◦ and for all s ∈ [0, 1]; and (iv) V (s, θ∗u(s), θq; 1) = V (sf (s), θ

∗
u(sf (s)), θq; 1)

for all s ∈ [0, 1] and all cost function Cu satisfying conditions (i)-(iv) in Assump-
tion C.1.

Proof. For (i), consider a QS distribution F and the working hypothesis: s̃(θ) 6=
s̃(θ′) for some θ, θ′ ∈ Θ◦. Since s̃(θ) is the only fixed point of sf (·, θ), there
exists s′ 6= s̃(θ′) such that Fθ(s̃(θ′), θ) = Fθ(s

′, θ). But then, since F is QS,
Fθ(s̃(θ

′), θ′) = Fθ(s
′, θ′), contradicting that s̃(θ′) is the only fixed point of sf (·, θ′).

Thus, s̃ is constant and hence F has a neutral signal.
Statement (ii) is immediate from (4). Statement (iii) follows from

F (s, θ)− F (sf (s), θ) =

ˆ θ

θ

Fθ(s, t)dt+ F (s, θ)−
ˆ θ

θ

Fθ(sf (s), t)dt− F (sf (s), θ)

= F (s, θ)− F (sf (s), θ)

for all s ∈ [0, 1] and θ ∈ Θ. Finally, statement (iv) follows from (ii) and (iii),
setting θ = θq and θ′ = θ∗u(s).
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We provide three simple properties on the functional form of F that are suffi-
cient for QS. The first one is ∂2F (z,θ)

∂θ2
= 0 for all (z, θ) ∈ (0, 1)×Θ◦. A distribution

in the RD family satisfies this property if γ is an affine transformation of θ (see
Example 2). The second property is separability of Fθ: Fθ(z, θ) = α(z)β(θ) for all
z ∈ (0, 1) and θ ∈ Θ◦, for some real functions α : (0, 1)→ R and β : Θ◦ → R. The
RD family also satisfies this property with, e.g., α(z) =

´ z
0
f1(z′)dz′−

´ z
0
f0(z′)dz′

and β(θ) = γ′(θ). The third property is rotational symmetry of the off-diagonal
terms of the Hessian of F : ∂f(z,θ)

∂θ
= −∂f(1−z,θ)

∂θ
for all z ∈ (0, 1

2
) and θ ∈ Θ◦, with

sf (s, θ) = 1− s for all s ∈ (0, 1) and θ ∈ Θ◦.50

Proof of Proposition 3: In the sequel, when convenient, we make explicit the
dependence of dq, v, r, and θ∗q on the natural readiness of fit candidates, so,
instead of writing dq(s), v(s), r(s), and θ∗q(s), we write dq(s; θq), v(s; θq), r(s; θq)
and θ∗q(s; θq), respectively, for all s ∈ [0, 1] and θq ∈ Θ◦. The proof hinges on the
following lemmata:

Lemma 4 Assume F.2, F.3, C.1, C.2, and Fθ(s, θ) = 0 for all s ∈ (0, 1). Then,
there exists θq ∈ Θ◦ such that for all θq ∈

(
θq, θ

)
, dq(s; θq) > 0 for all s ∈ [0, 1].

Proof. The Maximum Theorem, Assumptions F.3 and C.1-C.2 guarantee that
mins∈[0,1] dq(s; θq) varies continuously with θq. Further, Fθ(s, θ) = 0 for all s ∈ [0, 1]

and, from the hypothesis, mins∈[0,1] f(s, θ) > 0. Thus, there exists θq ∈ Θ◦ such

that mins∈[0,1] dq(s; θq) > 0 for all θq ∈
(
θq, θ

)
.

Lemma 5 Assume F.2-F.3, C.1-C.2, and Fθ(s, θ) = 0 for all s ∈ (0, 1). Then,
there exists θq ∈ Θ◦ such that for all θq ∈

(
θq, θ

)
, there exists ŝ(θq) ∈ (0, 1) such

that, if (s∗P , θ
∗
u, θ
∗
q) is a SPNE of Γ1, then the manager is soft if s∗P ∈ (0, ŝ(θq)) and

harsh if s∗P ∈ (ŝ(θq), 1).

Proof. First, direct computations yield

lim
(s,θq)→(s0,θ)

dv(s; θq)

ds
> lim

(s,θq)→(s0,θ)

dg(s, θ∗u(s), θ
∗
q(s; θq))

ds
(14)

for s0 = 0, 1. By Assumption F.3, v(0; θq) = κ(θq) and v(1; θq) = κ(θq), thus there
exist 0 < δ1 < δ2 < 1 and θq

1
∈ Θ◦ such that

v(s; θq)

{
> g(s, θ∗u(s), θ

∗
q(s; θq)) if s ∈ (0, δ1)

< g(s, θ∗u(s), θ
∗
q(s; θq)) if s ∈ (δ2, 1)

50Notice that Fθ(s, θ) =
´ s
0
∂Fθ(z,θ)

∂z dz = −
´ 1
1−s

∂Fθ(z,θ)
∂z dz = Fθ(1 − s, θ) for all (s, θ) ∈

(0, 1)×Θ◦.
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for all θq ∈
(
θq

1
, θ
)
.

Second, by Assumption F.2, Lemma 1, and direct computations, we have

lim
(s,θq)→(ŝu,θ)

dv(s; θq)

ds
< lim

(s,θq)→(ŝu,θ)

dg(s, θ∗u(s), θ
∗
q(s; θq))

ds
. (15)

Since v(ŝu; θ) = g(ŝu, θ
∗
u(ŝu), θ), there exist θq

2
∈ Θ◦, δ3 ∈ (δ1, ŝu), and δ4 ∈ (ŝu, δ2)

such that, for all θq ∈
(
θq

2
, θ
)
, there exists ŝ(θq) ∈ (δ3, δ4) satisfying

v(s; θq)


> g(s, θ∗u(s), θ

∗
q(s; θq)) if s ∈ (δ3, ŝ(θq))

= g(s, θ∗u(s), θ
∗
q(s; θq)) if s = ŝ(θq)

< g(s, θ∗u(s), θ
∗
q(s; θq)) if s ∈ (ŝ(θq), δ4).

Third, in game Γ2, for all s ∈ [δ1, δ3], either v(s; θ) > g(s, θ∗u(s), θ) or du(s) ≤ 0,
and v(s; θ) < g(s, θ∗u(s), θ), for all s ∈ [δ4, δ2]. Thus, if du > 0 on [δ1, δ3], then

v(s; θq)

{
> g(s, θ∗u(s), θ

∗
q(s; θq)) if s ∈ [δ1, δ3]

< g(s, θ∗u(s), θ
∗
q(s; θq)) if s ∈ [δ4, δ2]

for all large enough θq ∈ Θ◦. We used Weierstrass’ Theorem to establish that
the difference between v(s; θ) and g(s, θ∗u(s), θ) is strictly greater than zero for all
s ∈ [δ1, δ3], and the Maximum Theorem to establish that the difference between
v(s; θq) and g(s, θ∗u(s), θ

∗
q(s; θq)) is strictly greater than zero for all s ∈ [δ1, δ3], for

θq close enough to θ. An analogous argument applies for the interval [δ4, δ2]. On
the other hand, if du(s) < (=)0 for some s ∈ [δ1, δ3], then by Lemma 4, v(s; θq) is
negative (not defined) for large enough θq.

Hence v(·; θq) and g(·, θ∗u(·), θ∗q(·; θq)) cannot cross over [δ1, δ3] or [δ4, δ2] for all

θq ∈
(
θq

3
, θ
)
, for a large enough θq

3
∈ Θ◦.

Therefore, for all θq > θq := max
{
θq

1
, θq

2
, θq

3

}
, ŝ(θq) is the only root of

v(·; θq) − g(·, θ∗u(·), θ∗q(·; θq)) over (0, 1), and for any equilibrium (s∗P , θ
∗
q , θ
∗
u), we

have v(s∗P ; θq) > (<)g(s∗P , θ
∗
u(s
∗
P ), θ∗q(s

∗
P ; θq)) if s∗P < (>)ŝ(θq). Thus, the thesis of

the lemma holds.

Lemma 6 Assume F.2, F.3, C.1-C.2, and Fθ(s, θ) = 0 for all s ∈ (0, 1). Then,
there exists θq ∈ Θ◦ such that for all θq ∈

(
θq, θ

)
, the thesis of Lemma 3 holds in

Γ1.

Proof. From Lemma 4, F (·, θ∗q(·; θq)) is strictly increasing for high enough θq.
Thus, the argument showing that S∗ is increasing in the proof of Lemma 3 applies
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here too.
We prove that S∗(κ(θq)) = {0} (the proof of the statement S∗(κ(θq)) = {1} is

analogous). First notice that

lim
(s,θq)→(0,θ)

dv(s; θq)

ds
= lim

s→0

dv(s; θ)

ds
> lim

s→0

dg(s, θ∗u(s), θ)

ds
> 0. (16)

Thus, there exists θq
1
∈ Θ◦ and δ > 0 such that for all θq ∈

(
θq

1
, θ
)
, V(0;κ(θq), θq) <

V(s;κ(θq), θq) for all s ∈ (0, δ), where V(·;κ, θq) is the expected loss to the manager
V(s) for prior κ when the natural readiness of fit candidates is θq.

Second, from Lemma 3 and Assumption F.3, we know that limθq→θ V(0;κ(θq), θq) <

limθq→θ V(s;κ(θq), θq) for all s > 0. Let Ṽ(·, θq) := V(·;κ(θq), θq) and notice

that Ṽ(0, ·) and mins∈[δ,1] Ṽ(s, ·) are continuous functions. Thus, there exists θq
2

such that Ṽ(0, θq) < mins∈[δ,1] Ṽ(s, θq) for all θq > θq
2
. Thus, Ṽ(0, θq) < Ṽ(s, θq)

for all s > 0 and θq > max
{
θq

1
, θq

2

}
; that is, S∗(κ(θq)) = {0} for all θq >

max
{
θq

1
, θq

2

}
.

From (7) and F.3, for κ > κ(θq), we have dV(0;κ, θq)/ds < 0 and hence
0 /∈ S∗(κ). Analogously, for κ < κ(θq), we have dV(1;κ, θq)/ds > 0 and, hence,
1 /∈ S∗(κ).

Finally, an argument analogous to that in the corresponding part of the proof
of Lemma 3 proves that S∗ is strictly increasing over S∗−1(0, 1) = (κ(θq), κ(θq)).
Proof of Proposition 3. The proof of part (i) is analogous to the proof of
Proposition 1, with ŝ(θq), defined in Lemma 5, playing the role of ŝu:51 Lemma 5
plays the role of Lemmas 1 and 2, and Lemma 6 plays the role of Lemma 3.

Now we prove part (ii). If F is QS (and hence has a neutral signal), then, by

L’Hôpital’s rule, r(s; θq) =
(
∂f(s,θq)

∂θ

)2 (
∂f(s,θ)
∂θ

)−2
C′′u (θ)

C′′q (θq ;θq)
for s = 0, 1; and

r(s?; θq) =
Fθ(s

?, θ∗q(s
?; θq))

∂2f(s?,θ∗q (s?;θq))

∂θ∂s

(
C ′′q (θ∗q(s

?; θq)) +
∂2F (s?,θ∗q (s?;θq))

∂θ2

)−1

Fθ(s?, θ∗u(s
?))∂

2f(s?,θ∗u(s?))
∂θ∂s

(
C ′′u(θ∗u(s

?)) + ∂2F (s?,θ∗u(s?))
∂θ2

)−1 .

It follows that r is well defined over [0, 1], by Remark 3; furthermore max[0,1] r(s; ·)
is continuous and converges to 0 as θq → θ. Therefore, for large enough θq,
r(s; θq) < κ for all s ∈ [0, 1] and κ ≥ κ(θq); and from part (iii) ((iv)) of Lemma 2,
the manager is soft (harsh) in an equilibrium (s∗P , θ

∗
u, θ
∗
q) if s∗P < (>)s?. Thus,

51Case 1 in Part 1 in the the proof of Proposition 1 is not necessary here as the assumption
f > 0 rules out the possibility that κ(θq) =∞ for all θq ∈ Θ◦.
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there exists θq
3
< θ such that ŝ(θq) = s? for all θq ∈ (θq

3
, θ). Further, if F is QS,

(i)-(iii) in Claim 2 still hold in the extended model, so the analogous to (iv) in
that claim holds as well.52 Hence, if κ = 1, then V(s) = V(sf (s)) for all s ∈ [0, 1].
Therefore κ̃(θq) := sup{κ ∈ (0,∞) : supS∗(κ) ≤ ŝ(θq)} = 1 by an argument
analogous to that in the proof of Proposition 2. �

Proofs and Ancillary Material of Section 5

Lemma 7 Assume that F satisfies F.1-F.2 and Cq satisfies C.1 (i)-(iv). In game
Γ3, S∗ is weakly increasing over (0,∞) and strictly increasing over (κC , κC). Fur-
ther, S∗(κ) = {0} (corresp., ⊂ (0, 1),= {1}) for all κ ∈ (0, κC) (corresp., (κC , κC),
(κC ,∞)).

Proof. The proof that S∗ is weakly increasing is indirect and analogous to the
one in the proof of Lemma 3, so we omit it.

By definition, κC ≤
F (s,θ∗q (s))

F (s,θ)
, which is equivalent to 0 ≤ F (s, θ∗q(s))−κCF (s, θ),

for all s ∈ (0, 1). Thus 0 ∈ S∗(κC) and since S∗ is weakly increasing, S∗(κ) = {0}
for all κ < κC . Also by definition, for all κ > κC , there exists s ∈ (0, 1) such
that κ > F (s,θ∗q (s))

F (s,θ)
, which is equivalent to 0 > F (s, θ∗q(s))− κF (s, θ), and therefore

0 /∈ S∗(κ).
An analogous argument shows that 1 ∈ S∗(κC), S∗(κ) = {1} for all κ > κC

and that 1 /∈ S∗(κ) for all κ < κC .
Finally, the argument to prove that S∗ is strictly increasing over (κC , κC) is

analogous to the corresponding argument in the proof of Lemma 3.
Proof of Proposition 4. First, we establish that κ̃G ∈ (κC , κC). Observe that
V (ŝq, θ, θ

∗
q(ŝq); κ̃G) < V (s, θ, θ∗q(ŝq); κ̃G) < V (s, θ, θ∗q(s); κ̃G), for all s ∈ [0, 1] \

{ŝq}, where the first inequality follows from the fact that ŝq is the unique min-
imizer of V (·, θ, θ∗q(ŝq); κ̃G),53 and the second inequality follows from observing
that V (s, θ, ·; κ̃G) is decreasing for all s ∈ (0, 1) and ŝq is the unique maximizer
of θ∗q . Thus, S∗(κ̃G) = {ŝq}, and since in the proof of Lemma 7 it is shown that
S∗ is strictly increasing over (κC , κC), 0 ∈ S∗(κC) and 1 ∈ S∗(κC), we conclude
κ̃G ∈ (κC , κC).

Now we prove that the manager is ex-post efficient for all κ ∈ (0, κC). Notice
that κC ≤ lims→0

F (s,θ∗q (s))

F (s,θ)
= lims→0

dq(s)

f(s,θ)
≤ lims→0 g(s, θ, θ∗q(s)) = g(0, θ, θq).

Thus, κC ≤ g(0, θ, θq). The ex-post optimal standard is weakly increasing in κ

52In particular, part (ii) of Claim 2 holds for both θ∗q and θ∗u.
53Notice that by definition of κ̃G, ŝq is the ex-post optimal standard if fit candidates’ readiness

is θ∗q (ŝq), unfit candidates’ readiness is θ, and κ = κ̃G.
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and s = 0 is the only ex-post optimal standard for κ = g(0, θ, θq) (see Section 2.2).
Thus, since κC ≤ g(0, θ, θq) and S∗(κ) = 0 for all κ < κC (Lemma 7), we have
that the manager is ex-post efficient for all κ < κC .

The argument proving that the manager is harsh for all κ ∈ (κC , κ̃G) is analo-
gous to the argument showing that the manager is harsh for all κ ∈ (κ̃U , κ) in the
proof of Proposition 1. Instead of Lemma 3, we use Lemma 7.

The arguments showing that the manager is ex-post efficient for all κ ∈ (κC ,∞)

and soft for all κ ∈ (κ̃G, κC) are analogous to the arguments showing that the
manager is ex-post efficient for all κ ∈ (0, κC) and harsh for all κ ∈ (κC , κ̃G),
respectively. Finally, by (7), if κ = κ̃G, the manager is ex-post efficient. �
Proof of Proposition 5: In the sequel, when convenient, we make explicit the
dependence of du, r, and v on the unfit candidates’ cost parameter λ, so, instead
of writing du(s), r(s), and v(s), we write du(s;λ), r(s;λ), and v(s;λ), respectively,
for all s ∈ [0, 1] and λ ∈ [0, 1]. The proof hinges on the following lemmata:

Lemma 8 Assume F.2-F.3 and C.1-C.2. Then, there exists λ1 > 0 such that for
all λ ∈ [0, λ1), du(s;λ) > 0 for all s ∈ [0, 1].

Proof. The Maximun Theorem and F.3 guarantee that mins∈[0,1] du(s;λ) varies
continuously with λ. Further, mins∈[0,1] du(s;λ) = mins∈[0,1] f(s, θ) > 0 for λ = 0.
Thus, there exists λ1 > 0 such that mins∈[0,1] du(s;λ) > 0 for all λ ∈ [0, λ1).

Lemma 9 Assume F.2-F.3 and C.1-C.2. Then, there exists λ2 > 0 such that for
all λ ∈

[
0, λ2

)
, there exists ŝ(λ) ∈ (0, 1) such that if (s∗P , θ

∗
u(·;λ), θ∗q) is a SPNE of

Γ1(λ), then the manager is harsh if s∗P ∈ (0, ŝ(λ)) and soft if s∗P ∈ (ŝ(λ), 1).

Proof. The proof is analogous to the proof of Lemma 5, using the fact that v(·;λ)

approaches to v(·; 0) (instead of v(·; θq) approaches to v(·; θ)) and g(·, θ∗u(·;λ), θ∗q(·))
approaches to g(·, θ, θ∗q(·)) (instead of g(·, θ∗u(·), θ∗q(·; θq)) approaches to g(·, θ∗u(·), θ)),
as λ→ 0 (instead of as θq → θ).

Lemma 10 Assume F.2-F.3 and C.1-C.2. Then, there exists λ3 > 0 such that for
all λ ∈

[
0, λ3

)
, the thesis of Lemma 7 holds in Γ1(λ), mutatis mutandis, replacing

κC and κC with κC(λ) and κC(λ), respectively.

Proof. From Lemma 8, F (·, θ∗u(·;λ)) is strictly increasing for all λ < λ1. Then,
an argument analogous to the one in the proof of Lemma 7 applies with κC(λ)

and κC(λ) playing the role of κC and κC , respectively.
Proof of Proposition 5. Let κ̃G(λ) := g(ŝ(λ), θ∗u(ŝ(λ);λ), θ∗q(ŝ(λ))). Since
limλ→0 ŝ(λ) = ŝq, we have limλ→0 κ̃G(λ) = κ̃G. Similarly, limλ→0 κC(λ) = κC and
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limλ→0 κC(λ) = κC . Thus, there exists λ4 > 0 such that κC(λ) < κ̃G(λ) < κC(λ)

for all λ ∈ (0, λ4).
For part (i), the above lemmata allow us to provide an argument analogous to

the one in the proof of Proposition 4, with Lemma 9 playing the role of Lemma 1
and 2, and Lemma 10 playing the role of Lemma 7. We omit the details.

The proof of part (ii) is analogous to the proof of part (ii) of Proposition 3,
but showing that mins∈[0,1] r(s;λ) goes to ∞ as λ → 0, which implies that there
exists λ5 > 0 such that r(s) > κ for all s ∈ [0, 1], κ < κC(λ) and λ < λ5. The rest
of the argument is analogous and the details are omitted. Indeed, since in this
case, S∗(1) = {s?}, the argument is slightly more direct. �

Proofs and Ancillary Material of Section 6

Proof of Corollary 4. This result is a consequence of Proposition 3. Take θq to
be the same as in Proposition 3. Consider an arbitrary initial advantage θq > θq

and prior κ ∈ (κ(θq), κ̃(θq)). From Proposition 3, if (s∗P , θ
∗
u, θ
∗
q(·; θq)) is a SPNE of

Γ1(θq), then the manager is soft at that equilibrium, and thus, κ = v(s∗P ; θq) >

g(s∗P , θ
∗
u(s
∗
P ), θ∗q(s

∗
P ; θq)). Since g(1, θ∗u(1), θ∗q(1; θq)) = κ(θq) > κ̃(θq) > κ, there

exists s ∈ (s∗P , 1) such that g(s, θ∗u(s), θ
∗
q(s; θq)) = κ, by the Intermediate Value

Theorem. Hence, (s, θ∗u(s), θ
∗
q(s; θq)) is a BNE of Γ0(θq). This proves the first part.

For the uniqueness, note that dg(s,θ∗u(s),θ∗q (s;θq))

ds
= g(s, θ∗u(s), θ

∗
q(s; θq))ϕ(s; θq),

where

ϕ(s; θq) :=
1

f(s, θ∗q(s; θq))

∂f(s, θ∗q(s; θq))

∂s
− 1

f(s, θ∗u(s))

∂f(s, θ∗u(s))

∂s

+m(s, θ∗q(s; θq))
dθ∗q(s; θq)

ds
−m(s, θ∗u(s))

dθ∗u(s)

ds
, (17)

for all s ∈ [0, 1]. Thus, dg(s,θ∗u(s),θ∗q (s;θq))

ds
> 0 if and only if ϕ(s; θq) > 0. The first

line on the right hand side of (17) is strictly positive for all s ∈ [0, 1], due to
Assumption F.2, the hypothesis, and the fact that θ∗q > θ∗u.

In addition, Fθ(·, θ̄) = 0 implies limθq→θ̄m(s, θ∗q(s; θq))
dθ∗q (s;θq)

ds
= 0. Since ϕ(s; ·)

is continuous, using the Maximum Theorem, we have limθq→θ̄ mins∈[0,1] ϕ(s; θq) >

0. This yields the result. �
Proof of Corollary 5. This result is essentially a consequence of Proposition 5.
Consider λ as in Proposition 5 and arbitrary λ < λ and prior κ ∈ (κ̃G(λ), κC(λ)).
From Proposition 5, if (s∗P , θ

∗
u(·;λ), θ∗q) is a SPNE of Γ1(λ), then the manager is

soft at that equilibrium, and thus, κ = v(s∗P ;λ) > g(s∗P , θ
∗
u(s
∗
P ;λ), θ∗q(s

∗
P )).
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If κ ≤ max[s∗P ,1]

{
g(s, θ∗u(s;λ), θ∗q(s))

}
, then there exists s ∈ (s∗P , 1] such that

κ = g(s, θ∗u(s;λ), θ∗q(s)). Thus, (s, θ∗u(s;λ), θ∗q(s)) is a BNE of Γ0(λ). This proves
the result for this case.

If κ > max[s∗P ,1]

{
g(s, θ∗u(s;λ), θ∗q(s))

}
, then κ > g(1, θ∗u(1;λ), θ∗q(1)), and thus,

(1, θ, θq) is a BNE of Γ0(λ). This proves the result for this case.
Finally uniqueness, as in the proof of Corollary 4, follows from the fact that

for high enough θq, the minimum with respect to s of the sum of the first three
terms on the right-hand side of (17) is positive,54 an so it is the last term. �

Proofs and Ancillary Material of Section 7

Optimality of (s, p) mechanisms. We now show that allowing for positive
probabilities that (i) a candidate reporting to be unfit is tested, and (ii) a candi-
date reporting to be fit is outright hired or outright rejected, cannot decrease the
manager’s expected loss beyond what he can attain within the (s, p) class:

(i) Any mechanism that, with a strictly positive probability, asks a candidate
reporting to be unfit to take a test with standard s can be improved by other
mechanism that increases the probability of outright rejection of that candidate by
F (s, θ∗u(s))+Cu(θ

∗
u(s)) times the probability that she is subjected to the test in the

former mechanism. Such a change would not affect the unfit candidate’s expected
payoff from reporting unfit and would decrease the fit candidate’s expected payoff
from reporting unfit, because F (s, θ∗u(s)) + Cu(θ

∗
u(s)) > F (s, θ∗q(s)) + Cq(θ

∗
q(s)).

That is, incentive compatibility would still hold. Finally, the manager would be
strictly better-off due to the higher probability of rejecting the unfit candidate.

(ii) Now we show that allowing for a strictly positive probability of outright
rejection or outright hiring of a candidate reporting to be fit cannot make the
manager better-off. Since the incentive compatibility constraint for the unfit can-
didate is binding, the probability of rejecting a candidate who claims to be unfit
is p = p1 + (1− p1− p2) (F (s, θ∗u(s)) + Cu(θ

∗
u(s))), where p1 (p2) is the probability

of outright rejecting (hiring) a candidate reporting to be fit, and s is the standard
of the test. Hence, the manager’s expected loss is an affine transformation of

p1 +(1−p1−p2)F (s, θ∗q(s))−κp = p1VM(1)+p2VM(0)+(1−p1−p2)VM(s), (18)

for all (s, p1, p2) with s ∈ [0, 1] and p1, p2, 1 − p1 − p2 ≥ 0. An argument parallel
to the one used in the proof of Lemma 7 proves that 0 is the unique minimizer

54The sum of the first three terms is greater than in the proof of Corollary 4 now that θ∗u(·; 1)
is replaced by θ∗u(·;λ) with λ < 1.
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(corresp., is a minimizer, is not a minimizer) of VM for all κ < κM (corresp., for
κ = κM , for all κ > κM). Similarly, 1 is the unique minimizer (corresp., is a
minimizer, is not a minimizer) of VM for all κ > κM (corresp., for κ = κM , for all
κ < κM). Thus, (18) implies that the mechanism (sM , pM) = (0, 0) is optimal for
all κ ≤ κM , (sM , pM) = (1, 1) is optimal for all κ ≥ κM , and, for all κ ∈ (κM , κM),
there exists s ∈ (0, 1) such that (sM , pM) = (s, F (s, θ∗u(s)) +Cu(θ

∗
u(s))) is optimal.

Proof of Proposition 6. We proved part (i) in the previous paragraph. For
part (ii), we have that VM(s) < V(s) for all s ∈ (0, 1). Notice that κM ≤ κC(1) <

κC(1) ≤ κM . An argument parallel to the one in the proof of Lemma 7 reveals
that, in Γ1, 0 is the unique minimizer (corresp., is a minimizer, is not a minimizer)
of V for all κ < κC(1) (corresp., for κ = κC(1), for all κ > κC(1)). Similarly, 1
is the unique minimizer (corresp., is a minimizer, is not a minimizer) of V for all
κ > κC(1) (corresp., for κ = κC(1), for all κ < κC(1)). Thus, mins∈[0,1] VM(s) <

mins∈[0,1] V(s) for all κ ∈ (κM , κM).
Finally, we establish the increasingness of S∗M . Consider κ′ > κ, s ∈ S∗M(κ),

and s′ ∈ S∗M(κ′). Then,

F (s, θ∗q(s))− κ (F (s, θ∗u(s)) + Cu(θ∗u(s))) ≤ F (s′, θ∗q(s
′))− κ

(
F (s′, θ∗u(s′)) + Cu(θ∗u(s′))

)
F (s′, θ∗q(s

′))− κ′
(
F (s′, θ∗u(s′)) + Cu(θ∗u(s′))

)
≤ F (s, θ∗q(s))− κ′ (F (s, θ∗u(s)) + Cu(θ∗u(s))) .

Adding these inequalities yields

(κ′ − κ) [(F (s, θ∗u(s)) + Cu(θ
∗
u(s)))− (F (s′, θ∗u(s

′)) + Cu(θ
∗
u(s
′)))] ≤ 0,

which implies F (s, θ∗u(s))+Cu(θ
∗
u(s)) ≤ F (s′, θ∗u(s

′))+Cu(θ
∗
u(s
′)). By the Envelope

Theorem, F (·, θ∗u(·)) + Cu(θ
∗
u(·)) is strictly increasing; thus, s ≤ s′. �

Proof of Proposition 7. Let v(·; θq, λ) := dq(·; θq)/du(·;λ), for all θq ∈ Θ◦ and
λ ∈ (0, 1). We denote explicitly the dependence dependence of κC(λ) and κC(λ)

on θq, writing κC(θq, λ) and κC(θq, λ), respectively, for all θq ∈ Θ◦ and λ ∈ (0, 1).
By Assumption F.2 and the Maximum Theorem,

lim
(θq ,λ)→(θ,0)

min
s∈[0,1]

dv(s; θq, λ)

ds
= lim

(θq ,λ)→(θ,0)
min
s∈[0,1]

dvM(s; θ∗u(s;λ))

ds
= min

s∈[0,1]

dg(s, θ, θ)

ds
> 0.

Thus, there exist θq and λ such that v(·; θq, λ) and vM(·; θ∗u(·;λ)) are strictly
increasing for all (θq, λ) such that θq > θq and λ < λ. Further, v(s; θq, λ) =

vM(s; θ∗u(s;λ)) at s = 0, 1.
Suppose θq > θq and λ < λ. For all κ ≤ κM(θq, λ), sM = 0 and for all
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κ ≥ κM(θq, λ), sM = 1. Similarly, for all κ ≤ κC(θq, λ), s∗P = 0 and for all
κ ≥ κC(θq, λ), s∗P = 1. Furthermore, for all κ ∈ (κM(θq, λ), κM(θq, λ)), sM is the
root of vM(·; θ∗u(·;λ)) = κ. Similarly, for all κ ∈ (κC(θq, λ), κC(θq, λ)), s∗P is the root
of v(·; θq, λ) = κ. Since κM(θq, λ) ≤ κC(θq, λ) < κC(θq, λ) ≤ κM(θq, λ), and over
(0, 1), v(s; θq, λ) > (=, <)vM(s; θ∗u(s;λ)) if s < (=, >)ŝu(λ), we conclude s∗P < (>

)sM if and only if κ ∈ (κM(θq, λ), v(ŝu(λ); θq, λ)) (κ ∈ (v(ŝu(λ); θq, λ), κM(θq, λ))).
�
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