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Abstract
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of multiple agents under two assumptions: independent private information and

public preferences. In the optimal mechanism, agents assign points to the various

alternatives, which then get mapped into scores, so that the alternative with the

largest score wins. Each alternative�s score is the sum of points received plus an

extra term that is larger when the agents who have a strong preference for that

alternative assign points to the alternatives they like less.
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1 Introduction

In this paper, I consider the classical problem of an uninformed decision maker (DM)

who designs a mechanism that incentivizes informed agents to share their private in-

formation with her. The agents and the DM have di¤erent preferences over the various

alternatives available to the DM, so the DM cannot simply ask for the agents�private

information. When there is a single agent, the problem of �nding the DM�s opti-

mal mechanism has been solved. Holmstrom (1984) points out that, by the revelation

principle, it trivially follows that the DM should delegate her decision to the agent;

speci�cally, the DM �rst pre-selects a subset of (lotteries over) alternatives and then

the agent selects one of them. Delegation mechanisms allow the DM to use some of the

private information of the agent while also mitigating the potential danger of having

the agent choose an alternative that the DM does not like (through the initial choice

of admissible alternatives). The vast delegation literature that followed Holmstrom

(1984) has focused almost entirely on the one-agent case and has determined many

of the properties of the optimal delegation mechanism (Melumad and Shibano, 1991;

Armstrong, 1995; Martimort and Semenov, 2006; Alonso and Matouschek, 2008; Kovac

and Mylovanov, 2009; Koessler and Martimort, 2012; Amador and Bagwell, 2013).

Much less is known of the general problem with multiple agents. If the setting has

transfers, i.e., if the alternatives the DM chooses from are multidimensional and one

of the dimensions enters linearly in the utility functions of the agents, then optimal

mechanisms have been found in a variety of settings (Myerson, 1981, Myerson and

Satterthwaite, 1983, Maskin and Riley, 1984, among many others). However, settings

without transfers have proven to be harder to analyze. Holmstrom (1984) mentions

that one possibly interesting mechanism would be the delegation mechanism: the DM

pre-selects a set of alternatives and then delegates the �nal decision to one of the

agents. Indeed, Alonso, Brocas and Carrillo (2014) and Gan, Hu and Weng (2021),

who study settings with only two agents, �nd that a form of delegation is optimal

among mechanisms that are incentive compatible in dominant strategies. There is,

however, no mention of whether that mechanism is still optimal for the DM among

mechanisms that are Bayes-Nash incentive compatible, a concept that is more stan-

dard in mechanism design; in fact, I show it is not. Even the social choice literature,

which studies a variation of this problem by assuming that the DM has some speci�c

utility function like the (weighted) sum of the agents�utilities, has only been able to

fully characterize optimal incentive compatible mechanisms where there are only two
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alternatives available to the DM.1

Part of the reason why the problem with multiple agents has been so hard to

solve is that the di¤erences in the players�preferences vary depending on the agents�

private information, i.e., in addition to not knowing the agents�private information,

the DM does not know their preferences. Indeed, in most of literature, there is a one-to-

one mapping between the agents�private information and their (private) preferences.

However, there are a series of applications where agents have public preferences and

private information that the DM would like to have. For example, suppose that the

State assembles a group of experts that provide advice on how to legislate over gun

ownership. Each expert has private information over the potential danger (or lack

thereof) of legalizing gun ownership and is funded by an interest group that seeks to

either further or restrict gun ownership. It is publicly known which groups support

which experts. Another example is the problem of an arbitrator who must decide how

to split the assets of some bankrupted �rm among the many self-interested parties who

have information on how those assets should be distributed. The example I refer to

most often is that of a contest between multiple agents, where each agent wants to

be chosen but has information on which of the agents would be a better winner. For

example, the members of the board of some organization must decide a leader among

them. Every member wants to be the one selected and has information over which

member would be the best leader.

I study these types of applications by considering the general problem with multiple

agents but assuming that agents have public preferences, i.e., I break the direct link

between preferences and private information. In this paper, I focus on the case of

independent private information.

The optimal mechanism is not obvious at �rst glance. Clearly any form of (weighted)

majority rule works poorly because it gives incentives for agents to vote for their fa-

vorite alternatives rather than for those which provide more value to the DM. It works

especially poorly in contests, where each of the contestants has a vote, because every

1If there are only two alternatives and the agents�private information is independent, Azrieli and
Kim (2014) have shown that the optimal incentive compatible mechanism is the weighted majority
rule. In symmetric settings, the optimal mechanism becomes the simple majority rule (Schmitz and
Troger, 2012). When there are more than two alternatives, little is known about optimal mechanisms
in general, even though there is some promising work done on various speci�c settings (Borgers and
Postl, 2009, Miralles, 2012, Goldlucke and Troger, 2018, and Bhaskar and Sadler, 2020). There is
some characterization of optimal ordinal mechanisms, which only use the ordinal preferences of the
agents (Majumbar and Sen, 2004). However, it is also known that ordinal mechanisms are not optimal
(Kim, 2017). There is also a large literature which studies mechanisms that are incentive compatible
in dominant strategies (e.g. Gibbard, 1973; Satterthwaite, 1975; etc.).
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agent would vote for himself, so that the winner would end up being chosen randomly.

More broadly, score mechanisms, as introduced by Myerson (2002), also have the same

problem that agents simply vote for their preferred alternatives.2

One alternative that is very common in contests is the adjusted majority rule, which

works as the simple majority rule except that each agent cannot vote for himself.3

The appeal of the adjustment is that it seemingly negates the primary desire of each

contestant to vote for himself. However, this mechanism also has its share of problems.

First, in asymmetric settings where, a priori, there are some contestants that are better

than others, the adjusted majority rule does not induce agents to vote for the candidates

they think would provide more value to the DM. Second, even in symmetric settings,

where contestants do have an incentive to vote for who they think is the best candidate,

the mechanism still excludes a lot of information because, not only is it an ordinal

mechanism, it only uses the very top of the order of each candidate, i.e., it only asks

for each candidate�s top option.

Delegation is certainly a plausible mechanism for the DM. Indeed, going beyond

Holmstrom (1984), the DM could select a set of agents and a subset of alternatives

such that every agent selected is indi¤erent among all alternatives and then ask that

group of agents to collectively determine the winning alternative. However, I show in

the paper that, in general, none of these mechanisms is optimal.

I �nd that the (Bayes-Nash incentive compatible) optimal mechanism is as follows.

First, each agent assigns points to each alternative. Those points then determine each

alternative�s score and then, the alternative with the largest score is chosen. The

di¤erence to score mechanisms is that each alternative�s score does not depend only on

the sum of points received. Each alternative j�s score is the sum of two parts: �j and

�j. The �rst part �j represents the sum of points alternative j receives like in a score

mechanism. The second part �j has two key properties. On the one hand, each �j is

larger when agents who have a strong preference for alternative j assign a lot of points

to their least preferred alternatives. On the other hand, when some agent i does assign

points to his least favorite alternatives, the increase in each �j is weighted by agent i�s

preferences. So, for example, say that there are three alternatives - a; b and c - and that

agent 1 prefers alternative a, then b and then c. Suppose agent 1 observes an increase

in the value for the DM of alternative c and reacts by increasing the amount of points

2In a score mechanism, each agent assigns points to each alternative and then the alternative with
the most amount of points wins. Majority rule is a score mechanism.

3High-pro�le examples of the adjusted majority rule include the election of the pope, which did not
allow cardinals to vote for themselves up until 1945, and the election of the winner in the Eurovision
song contest among many other examples that can easily be found in any search engine.
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assigned to alternative c. On the one hand, �c increases, which increases alternative

c�s score. On the other hand, because agent 1 is giving additional points to his least

favorite alternative, �a; �b and �c all increase, but �a increases more than �b, which

increases more than �c (for each set of reports of the other agents). Overall, this leads to

alternative c replacing alternatives a and b as the winning alternative for some reports

of the other agents (which harms agent 1), while for some other reports, alternative b

is replaced by alternative a (which bene�ts agent 1). These two e¤ects taken together

leave agent 1 indi¤erent but improve the DM�s expected payo¤ on account of assigning

a larger probability to alternative c.

This explanation also provides intuition for the second result of the paper, which is

about the optimal mechanism when there are only two alternatives (labeled a and b)

available to the DM. Suppose that agent 1 strictly prefers a over b. It is not possible

that agent 1 has enough incentives to give points to alternative b if those points increase

alternative b�s probability of winning, because that would lower agent 1�s expected util-

ity. So, the DM can only bene�t from the agents�private information when there are

at least three alternatives. As a result, I �nd that, provided agents are not indi¤erent

between the two alternatives, it is not possible for the DM to gain from interacting

with the agents; she should just select the winning alternative with whatever public

information there is. While this result is also true in the standard delegation literature

with a single agent, it contrasts with some of the prominent literature on arbitration,

which considers a very similar setting - two privately informed agents dispute the own-

ership of an asset - but assumes that agents have perfectly correlated signals (Gibbons,

1998; Mylovanov and Zapechelnyuk, 2013). Indeed, in Gibbons (1998), the DM can

achieve her favorite outcome if she is able to observe her own exogenous and imperfect

signal.4

The optimal mechanism takes on a simpler form in contests, where each agent is

an alternative and is only interested in being selected: Agents assign points to every

other agent; i.e., they do not assign points to themselves. Then, each agent�s score is

the sum of points received plus an increasing function of the points assigned by the

agent. The agent wins the contest if his score is the highest. Once again, when some

agent i assigns a lot of points to some agent j, he does not alter his own probability of

being chosen (which is all he cares about) but does increase the probability of agent j

4Pereyra and Silva (2021) and Bloch et al. (2021), who study a similar model but with multiple
agents, also show how the DM can incentivize agents to communicate when she has access to exogenous
signals.
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being chosen at the expense of the other agents.5

If we further assume symmetry and restrict attention only to ordinal mechanisms,

the optimal mechanism becomes extremely simple: agents rank every agent, including

themselves. Then, each agent�s score is an increasing function of how others have ranked

him and a decreasing function of how the agent has ranked himself. Once again, the

winner is the agent with the largest score. Unlike cardinal mechanisms, which ask each

agent to be able to quantify by how much some alternatives are better than others,

ordinal mechanisms only ask agents to be able to rank the alternatives, which makes

them more appealing (Bogomolnaia and Moulin, 2001; Carroll, 2018). Assuming ex-

ante symmetry between the alternatives is particularly compelling in contests where

the DM is neutral; in asymmetric settings, the DM would prefer to design mechanisms

that favor some alternatives over others.

The paper continues as follows. In section 2, I present the model; in section 3; I

provide a simple example that illustrates some of the results; in section 4, I discuss

optimal mechanisms in general; in section 5, I discuss contests; in section 6, I conclude.

2 Model

There is a decision maker (DM) and I agents. The DM must decide between J alter-

natives. The payo¤ of each agent i depends only on the alternative j that is chosen

and is denoted by uij � 0. For each i, vector ui = (ui1; :::; uiJ) is assumed to be public.
Each agent i observes a private signal sij 2 Sij � R relative to each alternative j. For
each i, vector si = (si1; :::; siJ) 2 Si � Si1 � :::� SiJ represents agent i�s private type,
which is assumed to be independent across agents. Each set Sij is assumed to be �nite

and the probability distribution of si is denoted by pi.

The DM�s payo¤ depends on the alternative chosen and on the private information

held by the agents. I denote the DM�s payo¤ when choosing alternative j by vj (s),

where s = (s1; :::; sI) 2 S, and assume that

vj (s) =
IX
i=1

vji (sij) ,

5Goldlucke and Troger (2018) study a speci�c contest where the "winner" is chosen to perform
some public service and assume the agents�preferences are type-dependent. De Clippel et al. (2021)
study a dynamic contest between two agents.
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where each function vji : Sij ! R is strictly increasing for each i. Notice that, without
loss of generality, one can assume that vji (sij) = sij for all i and j.

6

Note: Before proceeding, it is important to remind the reader of the usual caveat
when dealing with independent types (e.g., Branco, 1996). Even though agents have

independent private information, that does not mean that their opinions over which

alternatives provide more value for the DM are also independent. Take as an example

the case where a hiring committee decides over which candidate to hire. Three experts

are a part of the hiring committee - one in micro theory, one in macroeconomics and

one in empirical microeconomics - and there are three candidates; one from each of

the experts��eld. The experts�preferences are public: each expert prefers to hire the

candidate of his �eld and is indi¤erent between the other two. However, the Dean,

who is the decision maker of the scenario, is not indi¤erent and would like to select the

most able candidate.

When forming an opinion over each candidate, each member of the recruiting com-

mittee relies on public information and on private information. The public information

is the information that is also available to the Dean. It includes information on the

candidates�CV, their publication and teaching records, how complimentary are the rec-

ommendation letters, etc.. The private information each expert has is more taste-based

and relies heavily on each agent�s introspection: is the candidate�s work important?; is

it novel?; is the candidate a good �t with the department? More formally, it is likely

that agent i�s opinion over candidate j denoted by oij = cj + "ij, where cj is common

to all agents and represents the public information available about candidate j and "ij
represents the private information held by agent i about candidate j. The assumption

of this paper is that "ij is independent across i for all j; it is not that oij is inde-

pendent across i. Indeed, if cj is random, then the agents�opinions over the di¤erent

candidates would be positively correlated even when the agents�private information is

independent.

An allocation is a function x : S ! [0; 1]J such that

JX
j=1

xj (s) = 1

6One can simply assume that the signals each agent observes are vji (sij) instead of sij .
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for all s 2 S. An allocation x is incentive compatible (IC) if

Es�i

 
JX
j=1

x (si; s�i)uij

!
= Es�i

 
JX
j=1

x (s0i; s�i)uij

!

for all si; s0i 2 Si and for all i. Notice that this incentive compatibility condition is
a direct consequence of assuming that the agents�private types are independent. In

general, incentive compatibility forces the allocation to be such that each agent always

prefers to report his type truthfully given that other agents also report truthfully.

Because types are independent, the beliefs that each type has over the reports of the

other agents will be the same. This means that di¤erent types face the same set of

lotteries over alternatives to choose from. Therefore, all types must be indi¤erent.

By the revelation principle (Myerson, 1979), the problem of �nding an optimal

mechanism reduces to that of �nding an optimal allocation. An optimal allocation

maximizes the DM�s expected payo¤ among all IC allocations. An optimal allocation

trivially exists, because there is always a solution to any linear program where the

(�nite) choice variables are probabilities. An optimal mechanism is a mechanism for

which there is a Bayes-Nash equilibrium which induces an optimal allocation.

In part of the paper, I speci�cally study contests. A contest is such that I = J and

uij =

(
1 if i = j

0 if i 6= j

for all i; j 2 I � J .

3 Example

In order to boost morale, the manager of a �rm decides to organize a costume contest

during Halloween in which the �rm�s employees participate. Each employee is supposed

to wear a costume during the Halloween party and, at the end of the party, the best

costume is selected and the employee is rewarded. For transparency, the manager

does not participate in determining the winning costume; instead, she determines the

mechanism by which a winner is chosen.

Each one of the I � 3 contestants has very simple and known preferences: they want
to win and, if they cannot win, they are indi¤erent as to whom should win. Formally,
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uii = 1 and uij = 0 for all i and for all j 6= i. During the party, each contestant

observes everyone else�s costume. To keep matters simple (I study the general case in

the text), let us assume that, after the party, each contestant i has one costume that

he �nds the best one and all other costumes are equally good.7 For example, if I = 3,

then

si 2 f(1; 0; 0) ; (0; 1; 0) ; (0; 0; 1)g ,

where si = (1; 0; 0), for example, is interpreted as contestant i thinking that contestant

1�s costume is the best one. Furthermore, assume a symmetric setting so that each

vector si has the same probability of 1I for all i. The manager, who strives for fairness,

is assumed to have a payo¤ of
IX
i=1

sij when contestant j is chosen to win the contest.

The manager knows of a few popular mechanisms. One option would be to elect the

winner through majority rule. Naturally, that would not work well as all contestants

would vote for themselves, so there would be a massive one-vote tie at the end of the

party.

Another option would be to divide the employees into two groups - jurors and

contestants - before the party starts. Jurors would be told they could not win and would

be instructed to deliberate together and determine a winner among the contestants.

This more general form of delegation does make sense in that the mechanism provides

enough incentives for jurors to choose the best costume among the group of contestants.

It turns out, however, that delegation is not optimal. To see why that is, let us consider

the simpler case when I = 3. In this case, the only delegation that makes sense for

the manager is to delegate on one single agent who then picks among the other two.

Seeing as the setting is completely symmetric, the manager is indi¤erent as to whom to

delegate, so she selects random delegation, where each contestant is made the (single)

juror with probability 1
3
. Consider the following vector of signals:

s1 = (0; 1; 0) , s2 = (1; 0; 0) , s3 = (1; 0; 0) .

Under random delegation, contestant 1 wins with probability 2
3
, contestant 2 wins with

probability 1
3
and contestant 3 does not win. Seeing as more employees prefer contestant

1�s costume over contestant 2�s costume, the manager would be better o¤ if contestant

1 won with probability 1. Indeed, the same happens for all of the following �ve equally

7Formally, assume that sij 2 f0; 1g for all i; j and that
JX
j=1

sij = 1.
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likely vectors of signals:

s1 = (0; 0; 1) , s2 = (1; 0; 0) , s3 = (1; 0; 0) ,

s1 = (0; 1; 0) , s2 = (1; 0; 0) , s3 = (0; 1; 0) ,

s1 = (0; 1; 0) , s2 = (0; 0; 1) , s3 = (0; 1; 0) ,

s1 = (0; 0; 1) , s2 = (0; 0; 1) , s3 = (1; 0; 0) ,

s1 = (0; 0; 1) , s2 = (0; 0; 1) , s3 = (0; 1; 0) .

In all of these, the most preferred costume only wins with probability 2
3
. Suppose we

change the random delegation mechanism as follows: whenever one of these six vectors

occurs, the contestant with the most preferred costume wins with probability 1; for all

other vectors, the winner is chosen according to the random delegation mechanism.

It is clear that the new mechanism makes the manager better o¤, as the most

liked costume is chosen more often. Moreover, it also follows that each contestant�s

expected payo¤ of choosing each signal remains unchanged. For example, consider

how contestant 1�s expected payo¤when his type is s1 = (0; 1; 0) changes from random

delegation to the new mechanism. Agent 1 increases his chances of winning by 1
3
when

s2 = (1; 0; 0) and s3 = (1; 0; 0), and loses 13 when s2 = (1; 0; 0) and s3 = (0; 1; 0). Seeing

as those two events are equally likely, agent 1�s expected payo¤ given type s1 = (0; 1; 0)

remains the same. Therefore, the new mechanism is also incentive compatible and is

strictly preferred by the manager to the random delegation mechanism.

After realizing that the delegation mechanism is not optimal, the manager again

considers the majority rule but with a twist; contestants are not allowed to vote for

themselves. In a symmetric setting such as this, contestants have an incentive to vote

"truthfully": whenever his preferred costume is not his own, each contestant votes

for his preferred costume; if his own costume is his preferred costume, he randomizes

over whom to vote for. When I = 3, this mechanism generates an expected payo¤ for

the manager of 3
2
. The reason why this mechanism is not optimal is that it does not

distinguish between contestant i voting for some contestant j who contestant i thinks

has the best costume, and contestant i, convinced that he has the best costume, but

being forced to vote for somebody else, voting for contestant j. Ideally for the manager,

in the former case, contestant j�s probability of winning would be larger than in the

latter.

Alerted to this issue, the manager quickly suggests that, rather than being forced
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to vote for others, each contestant should be allowed to abstain. Such a mechanism

works very poorly, however, because each contestant, interested in maximizing his own

chances of winning, would prefer to abstain over voting for his favorite costume. Indeed,

the optimal mechanism, which I characterize below, is similar to the majority rule with

abstention but contestants who abstain get an extra penalty.

In the text, I characterize the optimal mechanism in general (Propositions 1 and 2)

and then provide a further characterization for the case of contests (Propositions 3 and

4). Applying these results to the example returns the following optimal mechanism.

Each contestant has a vote. Let zi 2 f1; :::; Ig denote the vote of contestant i and
notice that each contestant can vote for himself. One can interpret a vote on one�s self

as an abstention. Once everyone has voted, each contestant receives a score as follows:

scorei =
X
j 6=i

1 fzj = ig � k1 fzi = ig

for k � 0. In words, candidate i�s score is the sum of votes received by others minus

some penalty k if candidate i decides to abstain. The winner of the contest is the

contestant with the largest score. The number of contestants I determines k and the

tie breaking rules (the probability that each contestant wins when multiple contestants

have the highest score). Speci�cally, both k and the tie breaking rules are chosen such

that each contestant is indi¤erent between abstaining and voting for others.

One can show that, if I is small, then k = 1 and, in the event of a tie, the tie-

breaking rules favor contestants who abstain.8 For example, if I = 3, then k = 1,

and, whenever there is a tie between a contestant who abstained and a contestant who

voted for somebody else, the contestant who abstained wins with probability 14
18
.9 In

that case, the manager�s expected payo¤ is 127
81
> 3

2
. When I is su¢ ciently large, k = 0

and the tie breaking rules favor those who vote for others.

Even though the tie breaking rules are important in the mechanism, as they ensure

that agents are indi¤erent, if the information structure of the agents is su¢ ciently rich

(i.e., if the types of the agents are approximately continuous), then ties happen with

arbitrarily small probability (I show this in the appendix).

8If all contestants with the highest score have abstained or have not abstained, the tie breaking
rules are even.

9For example, if s1 = (1; 0; 0), s2 = (1; 0; 0) and s3 = (0; 0; 1), contestants 1 and 3 have the highest
score of 0. Contestant 1 then wins with probability 14

18 while contestant 3 wins with probability
4
18 .
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4 Optimal mechanisms

If the DM could trust the agents to report truthfully, she should simply implement the

following naive mechanism: agents assign points to each alternative; the alternative

with the most points received is chosen. Formally, each agent i would report sij for

each alternative j (so that sij would be the amount of points assigned by agent i to

alternative j) and the winning alternative would be

jw 2 argmax �j (s) ,

where �j : S ! R is such that

�j (s) =
IX
i=1

sij.

Naturally, were the DM to commit to implementing this mechanism, the agents would

simply assign as many points as possible to their preferred alternatives and as few

points as possible to their least favorite alternatives. Therefore, as discussed in the

example, the DM must somehow penalize agents who assign a lot of points to their

favorite alternatives enough to keep them indi¤erent between all of their reports. As I

discuss in more detail in the next section, in contests, this is easier to do as it is enough

to punish agents who assign a lot of points to themselves and very few points to others.

In general, though, it is not clear a priori, what it means for an agent to assign a lot

of points to his favorite alternatives. The following de�nition formalizes this idea.

De�nition 1 For each agent i and any pair si; s0i 2 Si, si �i s0i if and only if, for all
pairs of alternatives j; j0,

uij > uij0 ) sij � sij0 � s0ij � s0ij0.

When si �i s0i agent i assigns more points to his favorite alternatives with vector si
than with vector s0i in the sense that, should the DM implement the naive mechanism,

agent i would always (weakly) bene�t from reporting si over s0i. For example, suppose

that J = 3 and that ui1 > ui2 > ui3. Consider signals si = (2; 1; 0) and s0i = (0; 1; 2).

Were the DM to implement the naive mechanism, agent i would prefer to report si
over s0i, because �1 would increase more than �2 and �2 would increase more than

�3. Therefore, si �i s0i. Notice that �i is a partial order because, for example, if
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s00i = (0; 2; 0), then signals si and s
00
i would not be comparable: when going from s00i to

si, �1 increases more than �2 but �2 increases less than �3.

Any vector of functions � = (�1; :::; �I) such that �i : Si ! R for all i is called

regular if, for each i and for any pair si; s0i 2 Si for which si �i s0i, �i (si) � �i (s0i).

The �rst result of the paper is that the following class of direct mechanisms are

optimal. Each agent i simultaneously assigns points sij 2 Sij to each alternative j.
Vector s determines each alternative j�s score as follows:

scorej (s) = �j (s) + �j (s) ,

where

�j (s) �
IX
i=1

�i (si)uij

for some � = (�1; :::; �I). The alternative with the largest score is chosen. Notice that

each such mechanism is completely described by a vector of functions � and a tie-

breaking rule T , which determine which alternative is chosen with what probability,

should there be multiple alternatives with the highest score. If one de�nes } (J) as the

set of all subsets of f1; :::; Jg excluding the empty set, one can formally de�ne T as
follows: T : S � } (J)! [0; 1]J such that

JX
j=1

Tj (s;
) = 1

and

j =2 
) Tj (s;
) = 0

for all j, for all s 2 S and for all 
 2 } (J), where each Tj (s;
) is interpreted as
the probability that alternative j is chosen given s 2 S and given that all alternatives
in set 
 2 } (J) have the highest score. Each direct mechanism with function �

and tie breaking rule T is denoted by Mech (�; T ). If Mech (�; T ) has a Bayes-Nash

equilibrium where agents report truthfully, I say that the allocation that is generated

by that equilibrium is truthfully induced by Mech (�; T ). Formally, if Mech (�; T )

truthfully induces allocation x�, then

x�j (s) = Tj (s;

� (s))

13



for all j and s 2 S, where 
� (s) represents the set of alternatives with the highest
score given � and s.

Proposition 1 i) For any optimal allocation x�, there is a regular � : S ! RI and a
tie breaking rule T : S � } (J)! [0; 1]J such that Mech (�; T ) truthfully induces x�.

ii) If there is some � : S ! RI such thatX
si2Si

pi (si)�i (si) = 0 (1)

for all i and a tie-breaking rule T : S�} (J)! [0; 1]J for which Mech (�; T ) truthfully

induces some allocation x�, then allocation x� is optimal.

Part i) of proposition 1 states that one can restrict attention to the type of direct

mechanisms described above with regular functions �. Even though these mechanisms

resemble score mechanisms, in that the alternative with the largest score is the one that

is chosen, they are fundamentally di¤erent because each alternative�s score is not just

the sum of points received; it has a second component �, which aligns the incentives of

the agents with the DM�s. Whenever agent i reports si �i s0i he assigns more points to
his favorite alternatives than with s0i (in the sense described above). To keep agent i

indi¤erent between reporting si and s0i, the mechanism rewards agent i when reporting

s0i as follows. Because si �i s0i, then �i (s0i) � �i (si), which, in turn, implies that

�j (s
0
i; s�i) � �j (si; s�i) for all j and for all s�i, i.e., every alternative�s � is larger

when agent i gives more points to the alternatives he likes the least (i.e., when he

reports s0i). However, this increase in the alternatives�scores is weighted by agent i�s

preferences; the increase is larger for the alternatives that agent i prefers.

Part ii) states that, in order to �nd an optimal mechanism, it is enough to �nd

a � such that (1) holds and a tie-breaking rule T such that agents prefer to report

truthfully given mechanism Mech (�; T ). Condition (1) states that the average �i (si)

is zero, thereby preventing �i (si) to be consistently high, which rules out sub-optimal

allocations where agent i is a dictator.

4.1 Example revisited

Let us consider again the example of section 3 when I = J = 3. If one realizes

that, for any symmetric setting, there is an optimal allocation that is symmetric, the
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problem becomes much simpler and can be solved using only part i) of proposition 1.

Speci�cally, by symmetry, it follows that

�1 (1; 0; 0) = �2 (0; 1; 0) = �3 (0; 0; 1) � a

and

�1 (0; 1; 0) = �1 (0; 0; 1) = �2 (1; 0; 0) = �2 (0; 0; 1) = �3 (1; 0; 0) = �3 (0; 1; 0) � b.

As a result, �nding the optimal mechanism boils down to �nding a, b and a tie-breaking

rule T for when agents who assign points to themselves have the same highest score

as agents who do not assign points to themselves. One can then verify that the set of

(a; b; T ) which works is any a and b such that a = b�2 with a tie breaking rule of 14
18
in

favor of the agents who assign more points to themselves. Seeing as any such (a; b; T )

leads to the same allocation, that allocation is optimal.

Had one not realized that there was a symmetric solution, part ii) of proposition 1

would have been required as it is not the case that any (�; T ) for which agents report

truthfully given Mech (�; T ) is optimal. For example, suppose �1 (s1) = k for all

s1 2 S1 and �2 (s2) = �3 (s3) = 0 for all s2 2 S2 and s3 2 S3. If k is su¢ ciently large,
the allocation that would be truthfully implemented would be a constant allocation

where alternative j = 1 would always be chosen, which is clearly not optimal. Part ii)

states that one can only be certain of having found an optimal mechanism if � satis�es

condition (1).

4.2 How does the optimal mechanism help the DM?

To get a better sense of what the mechanism does to help the DM, let us go through the

following exercise: say that agent 1 goes from observing (and truthfully reporting) s1
to observing (and truthfully reporting) s01, where s1j = s

0
1j for all alternatives j except

for one j = j� for which s1j� < s01j�. The only di¤erence between the two signals is

that, in the latter, agent 1 believes there is more value for the DM in picking j�. What

changes in terms of which alternatives get chosen?

One possibility is that nothing changes, so that x� (s01; s�1) = x� (s1; s�1) for all

s�1 2 S�1, where x� represents the optimal allocation induced by the mechanism.

Instead, let us consider the case where there is some s�1 2 S�1 for which x� (s01; s�1) 6=
x� (s1; s�1). In this scenario, as I detail below, the probability that alternative j� is
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chosen increases. For each alternative j and each vector s�1 2 S�1, let

4j (s�1) � scorej (s01; s�1)� scorej (s1; s�1) .

Using proposition 1, it follows that

4j (s�1) = s
0
1j � s1j + (�1 (s01)� �1 (s1))u1j

so that 4j (s�1) is actually independent of s�1. There are di¤erent cases to consider

depending on agent 1�s preferences: �1 (s
0
1) = �1 (s1), �1 (s

0
1) > �1 (s1) and �1 (s

0
1) <

�1 (s1). Let us consider the �rst two, as the third case is analogous to the second one.

Case 1: �1 (s01) = �1 (s1)

In this case, it follows that 4j0 = 4j00 for any pair j0; j00 such that j0; j00 6= j�,

i.e., the order of scores between alternatives other than j� stay the same. However,

4j� > 4j for all j 6= j�. As a result, giving points to alternative j� has the simple e¤ect
of replacing some of the other alternatives by alternative j� for some vectors s�1 2 S�1.
For agent 1 to be indi¤erent, it would have to be that some of the alternatives that are

replaced are preferred by agent 1 to alternative j� and some are not.

Case 2: �1 (s01) > �1 (s1)

In this case, for any pair j0; j00 such that j0; j00 6= j� it follows that 4j0 > 4j00

if and only if u1j0 > u1j00, i.e., the score of agent 1�s preferred alternative increases

more than his second most preferred alternative, which increases more than his third

preferred alternative and so on. However, alternative j�, which would be low in agent

1�s preference order in order to generate �1 (s
0
1) > �1 (s1), receives a boost of s

0
1j � s1j

that makes it go up that ranking. As a result, for some vectors s�1 2 S�1, there will
be some alternative j00 that gets replaced by some other alternative j0 6= j� such that
u1j00 > u1j0 (which is favorable to agent 1), while for some other vectors s�1 2 S�1,
some alternative j will be replaced by alternative j�. In the latter case, there will

certainly be some s�1 2 S�1 such that the alternative j that is replaced by j� is such
that u1j > u1j� to preserve incentive compatibility. Overall, agent 1 is left indi¤erent

by reporting s01 but increases the likelihood of alternative j
� being selected and that

is what helps the DM; she ends up increasing the odds of selecting alternatives which

receive more points.

For clarity, let us say that there are four alternatives and that ui1 > ui2 > ui3 > ui4
with j� = 4. The following table displays how each score changes when agent 1 goes
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from reporting s1 to reporting s01:

j �j �j

1 $ """"
2 $ """
3 $ ""
4 " "

The only �j that increases is �4, due to the additional points received from agent 1.

However, because agent 1 assigns additional points to an alternative he dislikes, the �j
that increase more are those of the alternatives that agent 1 prefers. Overall, for some

reports of the other agents, alternative 4 replaces alternatives 1, 2 and 3, which harms

agent 1, but, for some other reports, alternative 1 replaces alternatives 2 and 3, and

alternative 2 replaces alternative 3, which bene�ts agent 1. The combination of these

two e¤ects leave him indi¤erent.

4.3 Proof of proposition 1

For each agent i, let s�i 2 Si denote some arbitrary type of agent i and let bSi � Sin fs�i g.
It follows that any allocation x� is an optimal allocation if and only if it maximizes the

DM�s expected payo¤

V (x) =
X
s2S

P (s)
JX
j=1

xj (s)
IX
i=1

sij,

where

P (s) =

IY
i=1

pi (si) ,

subject to the incentive constraints,X
s�i2S�i

P (si; s�i)
X
j

(xj (si; s�i)� xj (s�i ; s�i))uij � ICi (si) = 0

for all i and si 2 bSi, the feasibility constraints,
P (s)

X
j

(xj (s)� 1) = 0
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for all s 2 S, and the non-negativity constraints,

P (s)xj (s) � 0

for all s 2 S and j.
By the Karush-Kuhn-Tucker theorem, an allocation x� is optimal if and only if it

satis�es all constraints and there is (�; ; �), where � = (�1; :::; �I), �i : bSi ! R for all
i,  : S ! R, � = (�1; :::; �J) and �j : S ! R+ for all j, such that

@L (x�; �; ; �)
@xj (s)

= 0 for all j and s 2 S (2)

and

�j (s)x
�
j (s) = 0 for all j and s 2 S, (3)

where

L (x; �; ; �) � V (x) +
IX
i=1

X
si2bSi

�i (si) ICi (si) +
X
s2S

P (s)
JX
j=1

( (s) + �j (s))xj (s) .

4.3.1 Proof of part i)

Let allocation x� be optimal and let (��; �; ��) be the corresponding Lagrange multi-

pliers such that (2) and (3) hold. For each i, let b�i : Si ! R be such that

b�i (si) =
8><>:

��i (si) if si 2 bSi
�
X
bsi2bSi

pi(bsi)
pi(s�i )

��i (bsi) if si = s�i
and let

score�j (s) = �j (s) +

IX
i=1

b�i (si)uij
for any s 2 S and j.

Claim 1 For any s 2 S and j,

score�j (s) < max
j0 6=j

score�j0 (s) ) x�j (s) = 0.
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Proof. Notice that (2) can be written as

score�j (s) + �
�
j (s) + 

� (s) = 0

for each s 2 S and j. I proceed by contradiction. Take any (j0; j00) and any s 2 S such
that score�j0 (s) > score

�
j00 (s) but assume that x

�
j00 (s) > 0. In that case, it follows that

��j00 (s) = 0 by (3), which implies that

score�j0 (s) + �
�
j0 (s) = score

�
j00 (s) ,

which is a contradiction, because ��j0 (s) � 0.

If b� = (b�1; :::; b�I) is regular, then the statement follows trivially by setting � = b�
and by de�ning the following tie-breaking rule T :

Tj (s;
) =

(
x�j (s) if 
 = 


� (s)
1fj2
g
j
j if 
 6= 
� (s)

for all s 2 S and 
 2 } (J).10 In general, however, there could be multiple Lagrange
multipliers associated with allocation x�, so it is possible that not all of them lead

to a regular b�. To overcome this issue, in the appendix, I describe an algorithm �

that transforms b� into a regular � (i.e., � (b�) = �) such that, when one de�nes each
alternative j�s score as

scorej (s) = �j (s) +
IX
i=1

�i (si)uij,

it follows that, for any s 2 S and j,

scorej (s) < max
j0 6=j

scorej0 (s) ) x�j (s) = 0.

4.3.2 Proof of part ii)

Take any (�; T ) such Mech (�; T ) truthfully induces allocation x�. In order to show

that x� is optimal, it is enough to �nd Lagrange multipliers (��; �; ��) such that (2)

10Notice that any 
 6= 
� (s) is "o¤-the-path" in that set 
 contains alternatives that do not have
the highest score. As a result, for all such 
, T (s;
) can be de�ned arbitrarily.
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and (3) hold. It can be veri�ed that the following multipliers satisfy both conditions,

provided condition (1) holds:

��i (si) = �i (si)

for all si 2 bSi and for all i,
� (s) = �max

j
scorej (s)

for all s 2 S and
��j (s) = �� (s)� scorej (s)

for all s 2 S and j.

4.4 Two alternatives

In the optimal mechanism, the DM is able to incentivize each agent to share his private

information by promising to leave him indi¤erent regardless of what he reports. When

an agent reports that a certain alternative he does not like has more value for the

DM, the DM is able to increase the likelihood that said alternative is chosen but

compensates the agent by also increasing the likelihood that some of the alternatives

the agent does like are chosen. When there are only two alternatives, this logic fails,

because providing information in support of one�s least favorite alternative directly

implies that one�s preferred alternative is selected less often. As a result, the DM does

not bene�t from interacting with the agents.

Proposition 2 If J = 2 and agents have strict preferences, there is an optimal allo-
cation x� that is independent of s 2 S.

Proof. For each agent i, let

ki �
X
si2Si

pi (si) si1 �
X
si2Si

pi (si) si2

and let � be as follows: for each agent i,

�i (si) =
ki

ui1 � ui2
� si1 � si2
ui1 � ui2

for each si 2 Si. Notice that each �i (si) is well de�ned because ui1 6= ui2 for all i

(agents have strict preferences). By construction, � satis�es (1) and is ordered. Let
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the tie-breaking rule T be such that

T1 (s; f1; 2g) = T2 (s; f1; 2g) =
1

2

for all s 2 S. Finally, notice that

score1 (s)� score2 (s) =

IX
i=1

(si1 � si2 + �i (si) (ui1 � ui2)) =
IX
i=1

ki

=
X
bs2S P (bs)�1 (bs)�

X
bs2S P (bs)�2 (bs) ,

which is independent of s. As a result, allocation x� is truthfully implemented by

mechanism Mech (�; T ), where

x�1 (s) =

8>>>>>><>>>>>>:

1 if
X
bs2S P (bs)�1 (bs) >

X
bs2S P (bs)�2 (bs)

1
2
if
X
bs2S P (bs)�1 (bs) =

X
bs2S P (bs)�2 (bs)

0 if
X
bs2S P (bs)�1 (bs) <

X
bs2S P (bs)�2 (bs)

for all s 2 S. Therefore, by proposition 1, part ii), allocation x� is optimal, despite
being independent of s.

5 Contests

In many applications, the DM (real or abstract) is asked to choose one of I self-

interested contestants, who are indi¤erent as to whom should be chosen should it not

be them. A lot of times, those contestants have information over which contestants

provide more value to the DM. Contests are then just a special case of the general model

described in section 3, so that the optimal mechanism can be found using proposition 1.

Given the special characteristics of contests, it is possible to further re�ne the optimal

mechanism.

For each � = (� 1; :::; � I) such that � i : Si ! R and tie-breaking rule T : S�} (J)!
[0; 1]J , de�ne mechanism Mechc (� ; T ) as follows: Each agent i simultaneously assigns

points sij 2 Sij to each alternative j 6= i. Vector s determines each alternative j�s score
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as follows:

scorecj (s) =
X
i6=j

sij + � j (sj) .

As before, the alternative with the largest score is chosen and ties are broken according

to T . Vector � is called external if each � i is independent of sii.

This new mechanism is very similar to the general mechanism of the previous sec-

tion except that each agent�s score does not depend on the points he assigns himself,

provided that � is external.

Proposition 3 i) For any optimal allocation x�, there is an external � : S ! RI such
that each � i is weakly increasing with sij and a tie breaking rule T : S�} (J)! [0; 1]J

such that Mechc (�; T ) truthfully induces x�.

ii) If there is some external � : S ! RI such thatX
si2Si

pi (si) � i (si) =
X
si2Si

pi (si) sii (4)

for all i and a tie-breaking rule T : S�} (J)! [0; 1]J for whichMechc (� ; T ) truthfully

induces some allocation x�, then allocation x� is optimal.

Proof. For part i), it follows by part i) of proposition 1 that, for any optimal allocation
x�, there is some (�; T ) such that x� is truthfully induced by Mech (�; T ) and � is

ordered. In mechanism Mech (�; T ), agent i�s report of sii only a¤ects scorei. As a

result, if, for each agent i, one arbitrarily de�nes some s�ii 2 Sii, it follows that, for any
s 2 S,

scorei (s) < max
j 6=i

scorej (s)) scorei (s
�
ii; si;�i; s�i) � max

j 6=i
scorej (sii; si;�i; s�i) .

In words, it must be that agent i�s report of sii does not matter in determining which

scores are the highest; if it did, agent i would always report whatever sii increased his

score the most. De�ne

� i (si) � s�ii + �i (s�ii; si;�i)

for all si 2 Si and notice that, by construction, � is external, for each i, � i is (weakly)
increasing with sij for all j 6= i because � is ordered and allocation x� is truthfully

induced by Mechc (� ; T ).

As for part ii), suppose thatMechc (� ; T ) truthfully induces some allocation x� and
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let � be such that

�i (si) � � i (si)� sii

for all i and for all si 2 Si. Because, by construction,

X
i6=j

sij + � j (sj) =
IX
i=1

sij + �j (sj)

and X
si2Si

pi (si)�i (si) = 0,

the result follows by proposition 1, part b).

Part i) states that one can always implement an optimal allocation by assigning

a score to each agent which only depends on the amount of points other agents have

assigned him. In this way, each agent�s assessment of himself - the sii of each agent

i - may only enter the mechanism through its impact on the tie-breaking rule. Nev-

ertheless, as I show in the appendix, the probability that there is a tie can be made

arbitrarily small as the agents�types become quasi-continuous. Part ii) states the con-

verse: if there is a mechanism where agents do not assign points to themselves that

truthfully induces some allocation, that allocation is optimal, provided condition (4)

holds.

5.1 Ordinal mechanisms under symmetry

Ordinal mechanisms are mechanisms that only use the information over how agents are

ordered in terms of their value for the DM. They are appealing because they require

less of each agent (Bogomolnaia and Moulin, 2001; Carroll, 2018). Each agent is not

required to know precisely how much better to the DM some alternatives are compared

to others; he is simply required to be able to rank them according to how much value

for the DM they provide.

Speci�cally, for this part of the paper, I make two additional assumptions.

Assumption A: For all i, pi (si) = 0 for all si 2 Si such that there is j; j0 for which
sij = sij0. In words, I assume that each agent i always believes that either agent j or

agent j0 provide more value to the DM (there are no ties).
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Assumption B: I assume symmetry: Sij is the same for all i; j and each si has the
same symmetric distribution.

Assumption B is convenient because it implies that there are optimal allocations

(ordinal and otherwise) that are symmetric (one can always generate a symmetric

optimal allocation by �nding a non-symmetric optimal allocation and randomizing

over each agent�s identity). That leads to the simpler mechanism described below.

Nevertheless, for non-symmetric settings, the optimal ordinal allocation can be found

using proposition 3.

Additional notation: For each agent i and each si 2 Si, let vector ri (si) =

(ri1 (si) ; ri2 (si) ; :::; riI (si)), where each rij (si) 2 f1; :::; Ig represents agent j�s rank-
ing according to agent i. So, for example, rij (si) = 1 if sij is the largest element

of vector si, rij (si) = 2 if sij is the second largest and so on. Let also r (s) =

(r1 (s1) ; r2 (s2) ; :::; rI (sI)). Let � : f1; :::; Ig ! R be such that

� (a) = E (sijjrij (si) = a)

for all a 2 f1; :::; Ig; � (a) represents the expected value added for the DM of selecting

agent j, given that agent i ranks agent j in the ath position. It then follows that � is

increasing.

Additional de�nitions: An allocation x is ordinal if and only if x (s) = x (s0)

for all s; s0 2 S such that r (s) = r (s0). A tie-breaking rule T : S � } (J) ! [0; 1]J

is ordinal if and only if T (s;
) = T (s0;
) for all 
 2 } (J) and s; s0 2 S such that
r (s) = r (s0).

For each � : f1; :::; Ig ! R and ordinal tie-breaking rule T : S � } (J) ! [0; 1]J ,

de�ne mechanism Mecho (�; T ) as follows: Each agent i simultaneously ranks each

alternative j (including himself) by reporting ri. Vector r determines each alternative

j�s score as follows:

scoreoj (r) =
X
i6=j

� (rij)� � (rjj) .

The alternative with the largest score is chosen with ties being resolved using T . If

Mecho (�; T ) has a Bayes-Nash equilibrium where agents report truthfully (rij = rij (si)

for all i and j), the allocation that is generated by that equilibrium is truthfully induced

by Mecho (�; T ).
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Proposition 4 i) If allocation x� is an optimal symmetric ordinal allocation, there
is a weakly decreasing function � : f1; :::; Ig ! R and an ordinal tie breaking rule

T : S � } (J)! [0; 1]J such that Mecho (�; T ) truthfully induces it.

ii) If there is some function � : f1; :::; Ig ! R such that

1

I

X
rii2f1;:::;Ig

� (rii) =
1

I

X
rii2f1;:::;Ig

� (rii) . (5)

and some ordinal tie breaking rule T : S � } (J) ! [0; 1]J such that Mecho (�; T )

truthfully induces some allocation x�, then allocation x� is an optimal ordinal allocation.

Proof. Consider the following information structure:

bSij = f� (1) ; � (2) ; :::; � (I)g
for any i; j with bpi being such that i) bpi (bsi) = 0 for any si for which bsij = bsij0 for
some pair (j; j0) and ii) bpi (bsi) = 1

I!
for any other bsi 2 bSi. By construction, a symmetric

ordinal allocation is optimal if and only if it is an optimal allocation given the new

information structure. As a result, by proposition 3, part i), it follows that, for each

optimal symmetric ordinal allocation x�, there is an external � : bS ! RI and a tie
breaking rule T : bS�} (J)! [0; 1]J such that Mechc (� ; T ) truthfully induces x�. For

each agent i, let eSi � nbsi 2 bSi : bpi (bsi) > 0o
and notice that the symmetry of x� implies that there is some (� ; T ) for whichMechc (� ; T )

truthfully induces x� such that � i is the same for all i and is such that � i (bsi) = � i (bs0i)
for all bsi; bs0i 2 eSi for which bsii = bs0ii. Moreover, because � i is weakly increasing with
each bsij, it follows that � i (bsi) � � i (bs0i) for all for all bsi; bs0i 2 eSi such that bsii � bs0ii. As
result, part i) follows by de�ning � (rii) = �� i (bsi) for any bsi 2 eSi such that bsii = rii.
As for part ii), suppose there is some � : f1; :::; Ig ! R such that (5) holds and

some tie breaking rule T : S�} (J)! [0; 1]J such thatMecho (�; T ) truthfully induces

some allocation x�. Let � : bS ! RI be such that � i (bsi) = �� (bsii) for any bsi 2 eSi
and � i (bsi) = M for any bsi =2 eSi where M 2 R is su¢ ciently small to ensure that

mechanism Mechc (� ; T ) truthfully induces allocation x� given the new information

structure. Notice that condition (5) implies thatX
bsi2bSi

bpi (bsi) � i (bsi) = X
bsi2bSi

bpi (bsi) bsii.
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As a result, it follows by part ii) of proposition 3, that allocation x� is optimal given

the new information structure.

Notice that, in the optimal mechanism described, each agent is asked to also rank

himself and not just others as it may have been expected given proposition 3, where I

show that agents do not report their own value. The way to reconcile the two results is

by noticing that, when an agent ranks himself, he is also providing information about

the other agents�values. For example, if an agent ranks himself �rst, the information

that is passed on to the DM is that the other agents�values are not that high. Therefore,

an agent ranking himself is useful not because of the information he provides about his

own actual value but about the value of others. Naturally, to make sure agents have

an incentive to report truthfully, ranking oneself high lowers one�s score because it also

lowers everybody else�s score (compared to ranking oneself lower).

By nature of its information structure, the optimal mechanism of the example is

an ordinal mechanism like the one described. Recall that in the example, each agent

simply ranks one of the agents as the best costume and all other costumes are tied in

second place. Therefore, each agent�s score is the sum of an increasing function of how

others rank him (the sum of votes received by others), plus a decreasing function of

how the agent ranks himself (whether the agent votes for somebody else or not).

6 Conclusion

6.1 On the complexity of the optimal mechanism

Part of the motivation of discussing ordinal mechanisms in section 5.1. is that the opti-

mal ordinal mechanism (for contests and under symmetry) are easier to understand by

the agents than the general optimal mechanism. In ordinal mechanisms, agents simply

have to rank alternatives and trust that a truthful report does not harm them. Never-

theless, one could argue that the optimal ordinal mechanism is still more complicated

than the adjusted majority rule, where agents simply vote for their favorite alternative

and are not allowed to vote for themselves. A middle ground solution would be the

following mechanism.

An alternative simple mechanism: Like the adjusted majority rule, have each
agent vote for one of the other agents, but allow each agent to choose to make their vote

a "strong" vote. So, each agent can choose whom to vote for and whether their vote
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is strong or weak. Compared to a weak vote, a strong vote by some agent i on some

agent j increases both agent j and agent i�s score (so that agent i is indi¤erent between

weak and strong voting). The reason why this alternative mechanism improves on the

adjusted majority rule is as follows. In the adjusted majority rule, when agent i votes

for agent j, he communicates to the DM that agent j provides more value than any

other agent di¤erent than i. However, in this new proposed mechanism, in addition to

reporting that agent j is better than any other agent di¤erent than i, agent i can also

say whether agent j is better than agent i or not; he gives a strong vote in the former

case and a weak vote in the latter case. In that way, the new mechanism takes into

account that if an agent receives a weak vote, their value is not as high as if they were

to receive a strong vote, so their score does not increase as much. Naturally, in order

for agents to have incentives to give strong votes, their own score must also increase.

Lastly, it is important to note that in none of these mechanisms - the optimal

mechanisms, the adjusted majority rule and the alternative simple mechanism - have

a dominant strategy; indeed, reporting truthfully is optimal for each agent provided

others do so as well. For that reason, for each of these mechanisms to work, each agent

must i) trust that it is best for him to report truthfully when others report truthfully

and ii) trust that everybody else will report truthfully. This is in contrast with the

delegation mechanism, where reporting truthfully is a dominant strategy for the agents.

6.2 On the requirement that agents be indi¤erent

One feature of the optimal mechanism is that agents are always indi¤erent as to what

to do. The challenge of the DM is precisely to design a mechanism that elicits as

much information as possible from the agents while keeping them indi¤erent. There

are various models and papers where the optimal mechanism is such that some agents

for some types are indi¤erent. However, one can usually build an alternative mech-

anism where are agents are not indi¤erent that works almost as well. That is not

possible in the model I consider; in fact, it is not possible in any delegation setting

with a single agent either. Indeed, as I discuss in section 2, because the agents�prefer-

ences are public and types are independent, any incentive compatible mechanism must

leave every agent indi¤erent between what to report; not just optimal mechanisms.

In that sense, while the reader might have concerns over whether agents will play as

speci�ed in the optimal mechanisms when indi¤erent, those concerns extend to any

mechanism. What the optimal mechanisms presented in the paper have in their favor
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is that they induce truthful reporting. That is, when indi¤erent, agents are supposed

to assign points and/or rank alternatives according to their perceived value of each

alternative. Reporting truthfully seems like a good default as most people experience

some discomfort when lying or deceiving (Gneezy, 2005).

6.3 On the likelihood that there are multiple highest scores

In general, in the optimal mechanism, there might be multiple alternatives with the

highest score. When that happens, it might be that the tie-breaking rule is not even;

a feature that might be undesirable or unrealistic in symmetric contests. Nevertheless,

that feature is largely non-existent in richer information structures. Speci�cally, I show

in the appendix that if each agent�s type is quasi-continuous (basically, if the set of

types is large and the probability of each type is small), the probability that there is

a tie is negligible. This does not mean that ties can then be assumed to be broken

evenly in and of itself, because ties would still have a positive, albeit (arbitrarily) small,

probability. However, relying again on the idea that agents have an intrinsic preference

for reporting truthfully, one can introduce the notion of an "�equilibrium (Fudenberg

and Levine, 1988). In a truthful " � equilibrium, agents report truthfully provided
that no deviation returns an expected payo¤ larger than " > 0. Equipped with this

new equilibrium concept, it then follows that, provided types are quasi-continuous, one

can take any optimal mechanism and then impose that ties are broken evenly. This

only slightly alters the agents�incentives but not enough to make them change their

(truthful) report.

7 Appendix

7.1 Proof of proposition 1 (remaining steps)

I complete the proof of part i) by describing an algorithm � such that � (b�) � � is

regular and such that

scorej (s) < max
j0 6=j

scorej0 (s) ) x�j (s) = 0,

for all s 2 S and j.
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For each agent i and type si 2 Si, let

�i (si) � fs0i 2 Si : s0i � sig

and notice that, if s0i 2 �i (s00i ), then s00i =2 �i (s0i). Let ci � jSij and recursively de�ne
set Sci as follows:

S0i = fsi 2 Si : �i (si) = ;g

and

Sci =

(
si 2 Sin

c�1[
c0=0

Sc
0

i : �i (si) �
c�1[
c0=0

Sc
0

i

)
for c = 1; :::; ci, where ci � jSij. Finally, de�ne �i recursively as follows:

8si 2 S0i ; �i (si) = b�i (si)
and

8si 2 Sci ; �i (si) = max
�b�i (si) ; max

s0i2�i(si)
�i (s

0
i)

�
for c = 1; :::; ci. Notice that, by construction, � = (�1; :::; �I) is regular.

Claim 2 For any s 2 S, for all j,

scorej (s) < max
j0 6=j

scorej0 (s) ) x�j (s) = 0. (6)

Proof. The proof is by induction. For all k = 0; 1; :::; I, and for all s 2 S and j, let

scorekj (s) =
IX
i=1

sij +
IX
i=1

$k
i (si)uij,

where

$k
i (si) =

(
�i (si) if i � kb�i (si) if i > k .

Essentially, each step k transforms � into b� one agent at a time; in particular,
score�j (s) = score

0
j (s) and scorej (s) = score

I
j (s) .

For each step k and each s 2 S, let


k (s) �
�
j : scorekj (s) � max

j0 6=j
scorekj0 (s)

�
,
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and, for each agent i,

uki (s) = max
j2
k(s)

uij and uki (s) = min
j2
k(s)

uij.

The claim can then be restated as follows: for any s 2 S, for all j such that x�j (s) > 0,
then j 2 
k (s). Notice that I have already established this for k = 0. Therefore,

it is enough to prove for all k = 1; :::; I that if x�j (s) > 0 ) j 2 
k�1 (s) then

x�j (s) > 0) j 2 
k (s) for all s 2 S and j.
Suppose the statement is false, so that there is some step k, s 2 S and some

alternative j such that x�j (s) > 0 but where j =2 
k (s). By the induction hypothesis,
it follows that j 2 
k�1 (s). This implies that ukk (s) > uij, while, by construction,

ukk (s) � uk�1k (s). On the other hand, the fact that 
k (s) 6= 
k�1 (s) implies that there
is some s0k 2 Sk such that s0k �k sk and �k (s0k) = �k (sk) = b�k (s0k) > b�k (sk). Notice
that, by construction, uk�1k

�
s0k; s

0
�k
�
� uk�1k

�
sk; s

0
�k
�
for all s0�k 2 S�k. Furthermore,

uk�1k (s0k; s�k) = u
k
k (s

0
k; s�k) � ukk (s) � ukk (s) > uij. As a result, given the induction

hypothesis, it follows that

Es0�k
�
x�
�
s0k; s

0
�k
��
> Es0�k

�
x�
�
sk; s

0
�k
��
,

which is a contradiction, because x� is incentive compatible.

7.2 On the likelihood that there are multiple highest scores

In the text, it is mentioned that the likelihood that there are multiple alternative

with the same highest score can be made arbitrarily small if types becomes quasi-

continuous. In this section, I make that statement precise. Consider a tournament

setting and assume that I � 3.

Proposition 5 Consider any optimal allocation x� and any mechanism Mechc (� ; T )

that truthfully implements it. Let � > 0 be such that, for all k 2 R,

Pr fsij � sij0 = kg < �

for all i; j and j0 6= j. It follows that

Pr
�
scorecj (s) = score

c
j0 (s)

	
< �
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for all j and j0 6= j.

Proof. Fix any pair j; j0. I show that

Pr
�
scorecj (s) = score

c
j0 (s)

	
< �.

Let i� be some agent i 6= j; j0. Notice that

Pr
�
scorecj (s) = score

c
j0 (s)

	
=

X
s�i�

Pr fs�i�gPr
�
scorecj (si� ; s�i�) = score

c
j0 (si� ; s�i�) js�i�

	
.

Furthermore, for any s such that scorej (s) = scorej0 (s) there is some a : S�i� ! R
such that

si�j � si�j0 = a (s�i�) .

As a result,

Pr
�
scorecj (si� ; s�i�) = score

c
j0 (si� ; s�i�) js�i�

	
< �

for all s�i� 2 S�i�. As a result,

Pr
�
scorecj (s) = score

c
j0 (s)

	
<
X
s�i�

Pr fs�i�g � < �.
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