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Abstract

We define the proportional ordinal Shapley (the POSh) solution, an ordi-

nal concept for pure exchange economies in the spirit of the Shapley value.

Our construction is inspired by Hart and Mas-Colell’s (1989) characteriza-

tion of the Shapley value with the aid of a potential function. The POSh

exists and is unique and essentially single-valued for a fairly general class of

economies. It satisfies individual rationality, anonymity, and properties sim-

ilar to the null-player and null-player out properties in transferable utility

games. The POSh is immune to agents’ manipulation of their initial endow-

ments: It is not D-manipulable and does not suffer from the transfer paradox.

Moreover, we characterize the POSh through a Harsanyi’s (1959) system of

dividends and, when agents’ preferences are homothetic, through a weighted

balanced contributions property à la Myerson (1980).
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participants at the 46th Simposio of Análisis Económico for their helpful comments. We gratefully
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1 Introduction

Economists have long been proposing allocation rules for economic environments

and evaluating them by different desiderata. Though no rule is advantageous under

every criterion, some allocation rules arise as dominant solution concepts for spe-

cific economic environments, such as the Walrasian allocation rule for pure exchange

economies and the Shapley value (Shapley, 1953) for coalitional games with trans-

ferable utility (TU). A natural question is whether we can extend solution concepts

initially designed for a specific economic environment to another.

In this paper, we propose a solution concept for pure exchange economies in

the spirit of the Shapley value, which satisfies many appealing properties and is

characterized by several methods in the class of TU games. Our construction is

inspired by Hart and Mas-Colell’s (1989) characterization of the Shapley value with

the aid of a potential function. This function assigns a number to every TU game

with the only condition that the marginal contributions to the potential of all players

add up to the worth of the grand coalition. Hart and Mas-Colell (1989) establish that

there is only one such potential function and the vector of marginal contributions

coincides with the Shapley value.

We follow a similar approach and associate a number to each pure exchange econ-

omy, the potential of this economy. Due to the absence of a numeraire commodity

in these environments, we choose each agent’s initial endowment as a yardstick to

measure the variation of his welfare in a solution; this variation will be proportional

to his initial endowment. The only condition that we impose on the potential func-

tion is the existence of an efficient allocation profile in the economy that satisfies

that any agent is indifferent between that allocation and his marginal contribution

to the potential times his initial endowment. That is, we require that it be possible

for each agent to obtain their marginal contribution to the potential through an
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efficient allocation.

The construction of the potential of a pure exchange economy entails the simul-

taneous definition of the efficient allocation profiles that are equivalent for all the

agents to their marginal contributions. These allocations are our solution for the

economy. We name the set of these allocations the proportional ordinal Shapley

(the POSh) solution. We include the word “ordinal” in the name of the solution

because its first important characteristic is that, by construction, the POSh is an

ordinal solution, that is, it is invariant to order-preserving transformations of the

agents’ utilities. Moreover, we show that the POSh solution is unique and essen-

tially single-valued1 in the set of exchange economies where the agents’ preferences

are reflexive, complete, transitive, strongly monotone, and continuous. It is also

individually rational.

The POSh inherits several of the appealing properties of the Shapley value. In

particular, it is anonymous with respect to the name of the agents (and it is also

neutral with respect to the name of the commodities). Additionally, the POSh

prescribes a zero bundle to any agent with zero endowments (these are “empty-

bundle agents,” we call them “empty agents” for short); that is, it satisfies the empty-

agent property. Further, it satisfies the empty-agent out property, which requires that

the presence of an empty agent does not influence the prescribed bundles for the

rest of the agents. These properties are reminiscent of the null player property and

the null player out property of the Shapley value (Derks and Haller, 1999).

To further highlight the links between the POSh and the Shapley value, we

provide a characterization of the POSh using a system of dividends that is similar

to the characterization of the Shapley value in TU games in terms of the Harsanyi’s

(1959) coalitional dividends. Also, when agents’ preferences are homothetic, we

characterize the POSh by efficiency and a weighted balanced contributions property,

in the spirit of Myerson’s (1980) characterization of the Shapley value. Finally, we

relate the POSh and the “proportional Shapley value” for TU games (Besner, 2016,

1 That is, if the POSh solution prescribes several allocations to an economy, every agent is

indifferent among all these allocations. Moreover, any allocation that is indifferent for every agent

to an allocation in the POSh solution is also in this set.
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and Béal et al., 2018).

The POSh is immune to certain peculiarities suffered by several allocation rules

for pure exchange economies, such as the Walrasian equilibrium. First, it is not

D-manipulable (Postlewaite, 1979); that is, an agent cannot be better off by getting

rid of part of his endowment. Second, it does not suffer from the transfer paradox

(Postlewaite and Webb, 1984); that is, the transfer of a portion of his endowment

to another individual cannot make an agent better off and the recipient worse off.

The closest contribution to ours is the paper by Pérez-Castrillo and Wettstein

(2006). They also provide an ordinal solution in the spirit of the Shapley value for

pure exchange economies by extending the idea of Pazner and Schmeidler (1978),

who introduce the notion of Pareto-efficient egalitarian equivalent (PEEE) alloca-

tions. A PEEE allocation is Pareto efficient and “fair” because, for each agent, it is

equivalent preference-wise to the same fixed bundle. Pérez-Castrillo and Wettstein’s

(2006) ordinal Shapley value (OSV ) considers possibly different individual endow-

ments and is constructed so that it satisfies “consistency,” in the sense that an agent’s

payoff is based on what he would obtain according to this value when applied to

subeconomies.

An essential difference between the POSh and the OSV is in the domain of the

solutions. We consider economies where the consumption bundles are non-negative,

whereas the OSV is defined in environments where the consumption of a commodity

can be positive or negative. Our set-up is more common in the general equilibrium

literature and prevents the consumption of a negative amount of goods, such as

apples. Let us note that most of the properties of the POSh, such as uniqueness,

essential single-valueness, empty-agent, and empty-agent out, are not satisfied by

the OSV .

In addition to Pérez-Castrillo and Wettstein (2006), the early works by Harsanyi

(1959), Shapley (1969), and Maschler and Owen (1992) propose extensions of the

Shapley value to non-transferable utility environments such as the pure exchange

economy that we study. The three proposals are defined in the utility space, and

they abstract from the physical environment that generates the utilities. However,

as Roemer (1986, 1988) discusses, much information is lost when one moves from the
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economic environment to the utility space. Thus, on the one hand, these proposals

are not ordinal since the solutions are not invariant to alternative representations of

the agents’ utilities. Moreover, Greenberg et al. (2002) make the observation that

the von Neumann and Morgenstein stable sets, defined for the economic environment

and the utility space, respectively, may not coincide, even though both are ordinal.

On the other hand, as Alon and Lehrer (2019) point out, two very different economic

environments, whose solution should be different, may lead to the same allocation

of utilities and, hence, the same solution.

McLean and Postlewaite (1989) also extend a notion from the class of TU games

to the set of pure exchange economies. They provide an ordinal nucleolus, a solution

concept proposed by Schmeidler (1969) for TU games. Nicolò and Perea (2005) and

Alon and Lehrer (2019) offer ordinal solutions for bargaining problems.

The remainder of the paper is organized as follows. Section 2 describes the

economic environment. It also introduces our new solution concept–the proportional

ordinal Shapley solution. Section 3 proves the existence and uniqueness of the

POSh. Several properties of the POSh are also stated and proved. Section 4

considers the environments where the agents have homothetic preferences. Section

5 concludes the paper. All the proofs are in the Appendix.

2 The environment and the solution concept

We consider a pure exchange economy. The set of agents is N ≡ {1, . . . , n}, with

generic agent i. The set of goods is L ≡ {1, . . . , l}, which is fixed throughout this

paper.

Agent i is described by (wi,⪰i), wherewi ≡ (wi1, . . . , wil) ∈ RL
+ is his commodity

bundle, and ⪰i is his preference relation defined over RL
+. We assume that ⪰i is

reflexive, complete, and transitive for each i ∈ N .2 We also assume that it is

strongly monotone and continuous. Preference ⪰i is strongly monotone if x ≻i y

for all x,y ∈ RL
+ such that x ≥ y and x ̸= y. Preference ⪰i is continuous if

2 Agent i’s preference ⪰i is reflexive if x ⪰i x for all x ∈ RL
+; ⪰i is complete if either x ⪰i y

or y ⪰i x for all x,y ∈ RL
+; ⪰i is transitive if x ⪰i y and y ⪰i z imply x ⪰i z for all x,y, z ∈ RL

+.
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{y ∈ RL
+ | y ⪰i x} and {y ∈ RL

+ | y ⪯i x} are closed subsets of RL
+, for all x ∈ RL

+.

A pure exchange economy is a triplet (N,w,⪰), where the vectorw is understood

as an endowment profile (w1, . . . ,wn) and ⪰ is understood as a preference profile

(⪰1, . . . ,⪰n). For a fixed set of agents N , the set of all exchange economies where

the agents’ preferences are reflexive, complete, transitive, strongly monotone, and

continuous is denoted by EN . The set of all such exchange economies with a finite

set of agents is denoted by E .

Definition 1. A feasible allocation for an exchange economy (N,w,⪰) is a

profile z ≡ (z1, . . . , zn) ∈ RN×L
+ such that

∑
i∈N zi ≤

∑
i∈N wi.

We denote by Z(N,w) the set of feasible allocations for the exchange economy

(N,w,⪰).

Two feasible allocations are comparable when all agents prefer one to the other

in unison. Formally, for z, z′ ∈ Z(N,w), we write z ⪰ z′ if zi ⪰i z
′
i for all i ∈ N .

Similarly, z ∼ z′ if zi ∼i z
′
i for all i ∈ N . Then, we can define an efficient allocation.

Definition 2. A feasible allocation z ∈ Z(N,w) of (N,w,⪰) is efficient if there

is no feasible allocation z′ ∈ Z(N,w) such that z′ ⪰ z and z′j ≻j zj for some j ∈ N .

We denote by E(N,w,⪰) the set of efficient allocations for the exchange economy

(N,w,⪰).

We now define a solution concept for pure exchange economies.

Definition 3. A solution is a correspondence F : E ⇝
⋃

N RN×L
+ such that

F (N,w,⪰) ⊆ Z(N,w) for all (N,w,⪰) ∈ E.

Thus, a solution F assigns a set of feasible allocations to each pure exchange econ-

omy. Given two solutions F and F ′, we write F ⊆ F ′ if F (N,w,⪰) ⊆ F ′(N,w,⪰)

for all (N,w,⪰) ∈ E .

A solution F is single-valued if F is a function, that is, it prescribes a unique

feasible allocation for every economy. A solution F is essentially single-valued if

{y ∈ Z(N,w) | y ∼ x} = F (N,w,⪰) for all (N,w,⪰) ∈ E and all x ∈ F (N,w,⪰).3

3 Our definition of essential single-valuedness is formulated for expository convenience. It is

stronger than that in the literature (see, e.g., Thomson, 2011), which only requires that every

allocation in the solution assigns the same welfare to every agent.
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Thus, an essentially single-valued solution prescribes a ∼-equivalence class within

the set of all feasible allocations. For an essentially single-valued solution F , we write

Fi(N,w,⪰) ⪰i Fi(N,w′,⪰) for i ∈ N if player i prefers the profiles in Fi(N,w,⪰)

to the profiles in Fi(N,w′,⪰). We write F (N,w,⪰) ⪰ F (N,w′,⪰) similarly.

Given that agents have initial private endowments, a reasonable solution should

ensure that an agent has an incentive to participate instead of walking away with

his endowment. The individual rationality of a solution captures this notion:

Definition 4. A solution F satisfies individual rationality if x ⪰ w for all

x ∈ F (N,w,⪰) and all (N,w,⪰) ∈ E.

Next, we formulate two properties that adapt the ideas of the null player prop-

erty and the null player out property (Derks and Haller, 1999) to pure exchange

economies. We identify a type of agents in pure exchange economies who play a

similar role as the null players in coalitional games. They are empty-basket agents;

we call them empty agents. An agent i ∈ N is an empty agent in the economy

(N,w,⪰) if wi = 0. An economy consisting of empty agents only is called an empty

economy.

The definition of the second property requires the following notation. Let x ∈

RN×L
+ be an allocation profile. Then, for N ′ ⊆ N , we denote by x |N ′∈ RN ′×L

+ the

profile x restricted to N ′, that is, (x |N ′)i = xi for all i ∈ N ′. The restrictions of the

preference profile are denoted analogously.

Definition 5. A solution F satisfies the empty-agent property if xi = 0 for each

empty agent i ∈ N in (N,w,⪰), all x ∈ F (N,w,⪰), and all (N,w,⪰) ∈ E.

Definition 6. A solution F satisfies the empty-agent out property if x |N\{i}∈

F (N \ {i},w |N\{i},⪰|N\{i}) for each empty agent i ∈ N in (N,w,⪰), all x ∈

F (N,w,⪰), and all (N,w,⪰) ∈ E.

The empty-agent and the empty-agent out properties are normative properties.

The first one requires that an empty agent be entitled to a zero bundle in any

allocation of the solution. In contrast, the empty-agent out property requires that

the presence of an empty agent should not influence the allocation of the solution
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to the rest of the agents. In general, the two properties are logically independent of

each other. But, in the presence of efficiency, the empty-agent out property implies

the empty-agent property.4

It is worth mentioning that Shafer’s (1980) example demonstrates that neither

the empty-agent property nor the empty-agent out property is satisfied by Shapley’s

(1969) NTU value.

We now turn to the properties of anonymity and neutrality. The first refers

to the agents and the second to the commodities. Before defining the property of

anonymity, we introduce the notation for bijections of agents and economies.

Consider an economy (N,w,⪰) and a bijection π : N → N ′. For a feasible allo-

cation z ∈ Z(N,w), we define the allocation πz ∈ Z(N ′,w) by (πz)π(i) ≡ zi for all

i ∈ N . For a preference profile ⪰ for N , we define, in a similar fashion, the prefer-

ence profile ⪰π for N ′ by ⪰π
π(i)=⪰i for all i ∈ N . Then, for each economy (N,w,⪰)

and each bijection π of the set of agents, we denote the bijection of the economy

by π(N,w,⪰) ≡ (π[N ], πw,⪰π). That is, the structure of economy π(N,w,⪰) is

identical to (N,w,⪰), but the names of the agents are changed according to π.

A solution is anonymous if the allocations that it prescribes for an economy are

not influenced by the name of the agents. Formally:

Definition 7. A solution F is anonymous if πx ∈ F (π(N,w,⪰)) for each bijec-

tion π : N → N ′ and each x ∈ F (N,w,⪰).

The property of neutrality, which refers to the names of the commodities, can

be defined analogously. For a bijection ρ : L → L′ and a commodity bundle x ∈

RL
+, we define the commodity bundle ρx ∈ RL′

+ by (ρx)ρ(h) ≡ xh for all h ∈ L.

Also, for a preference profile ⪰ over RL
+, the preference profile ⪰ρ is defined over

RL′
+ by ρx ⪰ρ

i ρy if x ⪰i y, for all i ∈ N and all x,y ∈ RL
+. Then, for each

economy (N,w,⪰) and each bijection ρ, we denote the bijection of the economy by

4 To see this implication, consider an efficient solution that satisfies the empty-agent out

property but does not satisfy the empty-agent property. Then there exists x ∈ F (N,w,⪰) such

that xi ̸= 0 for some empty agent i in (N,w,⪰). By the empty-agent out property, x |N\{i}∈

F (N \ {i},w |N\{i},⪰|N\{i}). Then we could construct a feasible profile y ∈ Z(N \ {i},w |N\{i})

where yj ≡ xj+
xi

n−1 , which would be strictly preferred by every j ∈ N \{i} by strong monotonicity.
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ρ(N,w,⪰) ≡ (N, ρw,⪰ρ). Thus, the structure of economy ρ(N,w,⪰) is identical

to (N,w,⪰), but the names of the commodities are changed according to ρ.

Definition 8. A solution F is neutral if ρx ∈ F (ρ(N,w,⪰)) for each bijection

ρ : L → L′ and each x ∈ F (N,w,⪰).

The last two properties that we propose concern the possibility for an agent to

“manipulate” the solution outcome via his endowment. Aumann and Peleg (1974)

demonstrate that before the opening of trade, an agent may be better off by get-

ting rid of part of his endowment. In light of this peculiarity, Postlewaite (1979)

formulates the following property, which is not implied by efficiency and individual

rationality:

Definition 9. An essentially single-valued solution F is D-manipulable if there

exist w,w′ ∈ RN×L
+ such that wi ≥ w′

i for some i ∈ N , wj = w′
j for each j ∈ N\{i},

and Fi(N,w,⪰) ≺i Fi(N,w′,⪰).

An anomaly closely related to D-manipulability is the transfer paradox: a trans-

fer of a portion of his endowment makes the donor better off and the recipient

worse off (see, e.g., Postlewaite and Webb, 1984). Definition 10 formally states this

paradox.

Definition 10. An essentially single-valued solution F exhibits the transfer para-

dox if there exist w,w′ ∈ RN×L
+ and two distinct agents i, j ∈ N such that wi ≥ w′

i,

wi+wj = w′
i+w′

j and wk = w′
k for each k ∈ N \{i, j}, Fi(N,w,⪰) ≺i Fi(N,w′,⪰),

and Fj(N,w,⪰) ≻i Fj(N,w′,⪰).

Now we present our solution concept: the proportional ordinal Shapley (POSh)

solution. We define the POSh in terms of agents’ preferences directly. Thus, it is

an ordinal solution.

To define the POSh, we first define a proportional ordinal potential (a poten-

tial, for short) in our economic environment, by adapting the idea of the potential

introduced by Hart and Mas-Colell (1989) in TU games. In this class of games, a

potential is a function that associates a single number to every n-person game. Once

we have such a potential function, we can associate to each agent i in the TU game
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(N, v) his marginal contribution to the potential, that is, the difference between the

potential of (N, v) and the potential of the game (N \ {i}, v |N\{i}). Then, it is

also reasonable to request that the sum of these agents’ marginal contributions be

efficient, in the sense that it must be equal to the worth of the grand coalition. Hart

and Mas-Colell (1989) show that there exists only one such potential function, and

the vector of its marginal contributions corresponds to the Shapley value.

In our set of exchange economies, a potential function also associates a single

number to each economy. To assign a surplus (an allocation) to each agent i in the

economy (N,w,⪰) based on the potential, we need a yardstick. We choose agent

i’s initial endowment wi as the reference to measure agent i’s welfare. Following

Hart and Mas-Colell (1989), we measure his marginal contribution in terms of the

difference between the potentials of the economies with and without him, (N,w,⪰)

and (N \{i},w |N\{i},⪰|N\{i}), times his initial endowment. Finally, we require that

it should be possible to allocate to each agent a bundle equivalent for him to the

bundle corresponding to his marginal contribution to the potential and that this

allocation is efficient.

Thus, for the set of exchange economies, we define a potential function as follows:

Definition 11. A (proportional ordinal) potential function P : E → R+ is de-

fined inductively on the number of players |N |:

1. P (∅) ≡ 0;

2. for (N,w,⪰) ∈ E, P (N,w,⪰) satisfies that there exists x ∈ E(N,w,⪰) such

that
(
P (N,w,⪰)− P (N \ {i},w |N\{i},⪰|N\{i})

)
wi ∼i xi for all i ∈ N .5

The prescription of the POSh is intertwined with our definition of a potential.

An allocation is in the POSh if it is efficient and each agent i is indifferent between

his prescribed bundle and some multiple of his endowment, where the multiple

is equal to the change of potential resulting from his entrance. Thus, we have the

following definition of a proportional ordinal Shapley solution in terms of a potential

P .

5 If N = {i}, we let P (N \ {i},w |N\{i},⪰|N\{i}) ≡ P (∅).
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Definition 12. Given a potential function P , a proportional ordinal Shap-

ley solution POSh : E ⇝
⋃

N RN×L
+ is defined by x ∈ POSh(N,w,⪰) if x ∈

E(N,w,⪰) and
(
P (N,w,⪰)− P (N \ {i},w |N\{i},⪰|N\{i})

)
wi ∼i xi for all i ∈ N .

As we will see in the next section, the POSh is an appealing solution concept.

It enjoys properties that echo the properties of the Shapley value, such as efficiency,

anonymity, the empty-agent property, and the empty-agent out property. Moreover,

it is also immune to well-known anomalies of the Walrasian equilibrium, such as the

D-manipulability and the transfer paradox.

At last, the POSh is often easy to compute owing to its neat definition in terms of

the potential. For illustration, we compute the POSh for a simple 3-agent economy

in Example 1.

Example 1. Consider the economy with L = {1, 2}, N = {1, 2, 3}, w1 = w2 =

(4, 4), w3 = (2, 2), u1(x1, y1) = 4x1+y1, u2(x2, y2) = x2+4y2, and u3(x3, y3) = x3y3.

To compute the POSh(N,w, u), we need to find the potential of each subecon-

omy. First, it is easy to see that P ({i}) = 1 for i = 1, 2, 3.6 Second, for the

subeconomy ({1, 2}, (w1,w2), (u1, u2)), an efficient allocation where both agents ob-

tain an allocation equivalent to (P ({1, 2}) − 1)(4, 4) assigns the eight units of the

first commodity to agent 1 and those of the second commodity to agent 2. Hence,

(P ({1, 2}) − 1)(4, 4) ∼1 (8, 0) (and (P ({1, 2}) − 1)(4, 4) ∼2 (0, 8)), which implies

that P ({1, 2}) = 13
5
.

Third, any interior efficient allocation in the subeconomy ({1, 3}, (w1,w3), (u1, u3))

satisfies that y3 = 4x3. Therefore, we can conjecture that an efficient allocation in

the POSh is ((6− x3, 6− 4x3), (x3, 4x3)) such that 0 ≤ x3 ≤ 6
4
. Then (P ({1, 3})−

1)(4, 4) ∼1 (6−x3, 6−4x3) and (P ({1, 3})−1)(2, 2) ∼3 (x3, 4x3), that is, 20(P ({1, 3})−

1) = 30 − 8x3 and 4(P ({1, 3}) − 1)2 = 4x2
3. Hence, P ({1, 3}) = 29

14
. Similarly,

P ({2, 3}) = 29
14

too.

Finally, consider the economy (N,w, u). We can conjecture that a generic effi-

cient allocation in the POSh must satisfy x1 = y2 and x2 = y1 = 0, that is, it must be

((x1, 0), (0, x1), (10−x1, 10−x1)), for x1 ∈ [0, 10]. Then, (P (N)−P ({2, 3}))(4, 4) ∼1

6 In this example, we write P ({i}) instead of P ({i},wi,⪰i), and similarly for the other sube-

conomies, for simplicity.
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(x1, 0) and (P (N)−P ({1, 2}))(2, 2) ∼3 (10−x1, 10−x1)). This system of equations

leads to P (N) = 1789
490

and x1 = 387
49
. Therefore, the unique bundle in the POSh is

((387
49
, 0), (0, 387

49
), (103

49
, 103

49
)).

Example 1 allows us to make two remarks concerning first, the relationship

between the POSh and the Walrasian allocations, and second, the property of pop-

ulation monotonicity.

Remark 1. It is easy to see that the Walrasian equilibrium allocation and the core

for Example 1 coincide, which is ((8, 0), (0, 8), (2, 2)) (the Walrasian equilibrium

price is (1, 1)). Therefore, the POSh may not be in the core.

Remark 2. In Example 1, the addition of agent 3 to the economy ({1, 2}, (w1,w2), (⪰1

,⪰2)) harms agents 1 and 2 under POSh by decreasing their utilities from 8 to 387
49
.

That is, the example demonstrates that POSh is not population monotonic in the

sense of Sprumont (1990) and Chambers and Hayashi (2020).

3 Existence and properties of the proportional or-

dinal Shapley solution

In this section, we establish the existence, uniqueness, and other properties of the

proportional ordinal Shapley solution.

To show the existence and uniqueness of the POSh, we first state these prop-

erties for pure exchange economies where all the agents have a positive vector of

endowments. Then we will relate the POSh of any pure exchange economy and

the POSh of the same economy but without its empty agents. This link is possible

because, as Proposition 2 will state, any POSh solution treats the empty agents

as if they would not participate in the economy; that is, any POSh satisfies the

empty-agent and the empty-agent out properties.

We proceed to analyze the POSh in economies without empty agents. Given

that any POSh solution is based on a potential, we first establish in Proposition

1 the existence and uniqueness of the potential function restricted to economies in
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which each agent is not empty. Denote by E ′ the set of all economies with only

non-empty agents.

Proposition 1. There exists a unique potential function restricted to E ′.

We make two remarks concerning the hypotheses that we use in the proposition.

Remark 3. We state Proposition 1 for economies where the agents’ preferences

satisfy strong monotonicity. We cannot replace this hypothesis by the weaker axiom

of strict monotonicity. Recall that player i’s preference over commodities ⪰i is

strictly monotone if x ≻i y for all x,y ∈ RL
+ such that xh > yh for all h ∈ L.

To see that this weaker property does not suffice, consider the two-agent economy

({1, 2},w,⪰), where w1 = (1, 1), w2 = (2, 1), ⪰1 is represented by u1(x1, y1) = x1,

and ⪰2 is represented by u2(x2, y2) = y2. Both agents’ preferences satisfy strict

monotonicity but they do not satisfy strong monotonicity. According to Definition

11, P ({1},w1,⪰1) = P ({2},w2,⪰2) = 1. Moreover, there exists a unique Pareto

efficient allocation for ({1, 2},w,⪰), which assigns (3, 0) to agent 1 and (0, 2) to

agent 2. But then, a number P ({1, 2},w,⪰) that would satisfy (P ({1, 2},w,⪰) −

P ({2},w2,⪰2))(1, 1) ∼1 (3, 0) and (P ({1, 2},w,⪰)−P ({1},w1,⪰1))(2, 1) ∼2 (0, 2)

does not exist. Hence, a potential function does not exist for this economy.

Remark 4. The full strength of the property of the continuity of preferences is not

necessary for Proposition 1 to hold. The proof only requires lower semi-continuity

of the preferences, i.e., {y ∈ RL
+ | y ⪯i x} is closed for all x ∈ RL

+ and all i ∈ N .

The existence and uniqueness of the potential function restricted to E ′ leads to

the existence and essential single-valuedness of the POSh restricted to this set:

Corollary 1. There exists a unique essentially single-valued proportional ordinal

Shapley solution restricted to E ′.

We now consider the economies including empty agents. Given that the potential

function and the POSh solution exist for economies without empty agents, it is

convenient to consider, for each economy, the subeconomy that contains all the

non-empty agents of the original economy. Formally, we define the support of the

13



economy (N,w,⪰) as the subeconomy where an agent i ∈ N participates if and

only if wi ̸= 0. The support of the economy (N,w,⪰) is denoted by supp(N,w,⪰).

Similarly, we denote by 0(N,w,⪰) the subeconomy of (N,w,⪰) that contains all the

empty agents. Thus, each economy (N,w,⪰) can be decomposed into two disjoint

subeconomies: supp(N,w,⪰) and 0(N,w,⪰).

Using the notion of the support of an economy, it is natural to propose an exten-

sion of the potential function to the unrestricted domain as follows: the potential

of any economy is equal to the potential of its support plus the potential of the

subeconomy containing its empty agents. Proposition 2 uses that the potential of

an economy always satisfies the previous relation (see the proof of Proposition 2) to

state that, in any POSh solution, empty agents receive an empty basket and they

do not influence the allocation received by the other agents.

Proposition 2. Any proportional ordinal Shapley solution in E satisfies the empty-

agent property and the empty-agent out property.

Proposition 2 highlights that, in a POSh solution, empty agents do not obtain

any surplus (since they do not contribute to it), and they do not influence the sharing

of the surplus allocated to the rest of the agents. It indicates that an empty agent

can be viewed as a placeholder under any POSh.

Every proportional ordinal Shapley solution satisfies the empty-agent and the

empty-agent out properties. Hence, its prescription for agents in a general economy

can distinguish between empty and non-empty agents. On the one hand, an empty

agent is prescribed a zero bundle by the empty-agent property. On the other hand,

a non-empty agent has prescribed a bundle equal to some bundle prescribed by the

POSh for the support of this economy by the empty-agent out property. Hence, we

deduce the uniqueness of the POSh for the unrestricted domain from the uniqueness

of the POSh for the economies without any empty agents. We state the existence

and uniqueness of the POSh in the unrestricted domain in Theorem 1.

Theorem 1. There exists a unique essentially single-valued proportional ordinal

Shapley solution in E.
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From here onward, we will refer to the proportional ordinal Shapley solution

since it is unique.

The proof of Theorem 1 proposes to use the following potential function: the

potential of an economy is equal to the potential of the support of that economy.

That is, the proposed potential assigns a value 0 to any economy consisting of empty

agents only. The essentially single-valued POSh is associated with this potential

function. However, the uniqueness of the potential for the set of economies without

empty agents (Proposition 1) does not extend to the unrestricted domain. In par-

ticular, for any empty economy, the potential of each subeconomy can be assigned

an arbitrary positive number.

We recall that Theorem 1 establishes the existence and uniqueness of the propor-

tional ordinal Shapley solution for pure exchange economies where preferences are

(in addition to reflexive, complete, and transitive) continuous and strongly mono-

tone. The requirements for the existence of the POSh are incomparable with those

for Walrasian equilibrium. Indeed, the existence of Walrasian equilibrium requires

each agent’s preference to be continuous, convex, and non-satiated, and each agent’s

endowment strictly positive (see Border, 2017). On the one hand, strong monotonic-

ity is a stronger assumption than non-satiation. On the other hand, neither convex

preferences nor strictly positive endowment is needed for the existence of the POSh.

We have defined the POSh using the idea of the potential, which characterizes

the Shapley value. We have seen that the POSh exists and is unique and essentially

single-valued. We now prove and discuss other properties related to properties that

the Shapley value satisfies in TU games.

The classic characterization of the Shapley value in TU games uses efficiency, null

player, anonymity, and linearity. By definition, the POSh is an efficient solution.

Moreover, it satisfies the empty-agent property (Proposition 2), which corresponds

in our pure exchange economy to the null player axiom in TU games. In fact, it

also satisfies the empty-agent out property that, under efficiency, is stronger than

the empty-agent property.

We now turn to the axiom of anonymity. Proposition 3 states that the POSh

satisfies not only the property of anonymity but also neutrality. That is, it is immune
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to changes in the names of the agents and commodities.

Proposition 3. The proportional ordinal Shapley solution satisfies anonymity and

neutrality in E.

Concerning the last axiom in the classic characterization of the Shapley value in

TU games, the POSh does not satisfy a property in the spirit of the linearity axiom

of the Shapley value. When preferences are representable by a quasilinear utility

function, it generally leads to a different level of utility than the Shapley value of the

associated TU game. In the next section, we identify the TU value corresponding

to the POSh when agents’ preferences are quasilinear and homothetic.

We now turn to characterize the POSh using an idea similar to the “coalitional

dividends” (Harsanyi, 1959). Harsanyi’s characterization of the Shapley value is

very different from the classic characterization. His approach considers that every

coalition negotiates a vector of dividends such that the sum of all coalitional divi-

dends vectors constitute a feasible allocation for the grand coalition. Therefore, the

dividends that a coalition allocates are what is left after all its proper subcoalitions

have received their corresponding dividends. Proposition 4 shows that the POSh

solution can be characterized in a similar manner. We can construct a system of

dividends that leads to the following alternative representation of the POSh:

Proposition 4. For all (N,w,⪰) ∈ E, there exists a vector of dividends (dS)S∈2N\{∅}

such that for all N ′ ∈ 2N \ {∅}, x ∈ POSh(N ′,w |N ′ ,⪰|N ′) if and only if x ∈

E(N ′,w |N ′ ,⪰|N ′) and
(∑

T∋i
T⊆N ′

dT
)
wi ∼i xi for all i ∈ N ′.

We note that Pérez-Castrillo andWettstein (2006) also provide a characterization

of their ordinal Shapley value (OSV ) in terms of dividends. However, there is an

important difference between their characterization and ours. For the OSV , the

dividends dS and d′S of the same coalition S ⊆ N ′ for an economy (N,w,⪰) and

its subeconomy (N ′,w |N ′ ,⪰|N ′), respectively, may be different. By contrast, for

the POSh, the dividends of the same coalition of an economy and its subeconomy

must be the same. In this sense, our characterization is closer in spirit to Harsanyi’s

(1959) characterization of the Shapley value in the set of TU games.
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The last part of the section provides three additional properties of the POSh,

which are relevant in the pure exchange economies where it is defined. First, we

show that, as the Walrasian equilibrium, the POSh is individually rational; that is,

no agent has an incentive to refuse to participate in the solution.

Proposition 5. The proportional ordinal Shapley solution satisfies individual ratio-

nality in E.

An immediate consequence of the individual rationality of the POSh, together

with its essential single-valuedness, is that a version of the second fundamental

welfare theorem holds for the POSh: any efficient allocation is sustained under the

POSh solution.

Corollary 2. If w is efficient in (N,w,⪰), then w ∈ POSh(N,w,⪰).

Finally, we highlight that, in contrast to the Walrasian equilibrium, the POSh

is robust against agents’ manipulation of their initial endowment. Proposition 6

shows that an agent never has an incentive to throw away any part of his initial

endowment, that is, the POSh is not D-manipulable. Proposition 7 states that the

POSh does not exhibit the transfer paradox; that is, transferring a portion of his

initial endowment cannot make the donor better of and the recipient worse off.

Proposition 6. The proportional ordinal Shapley solution is not D-manipulable in

E.

Proposition 7. The proportional ordinal Shapley solution does not exhibit the trans-

fer paradox in E.

4 The proportional ordinal Shapley solution when

agents have homothetic preferences

This section restricts attention to the set of exchange economies where agents have

homothetic preferences to provide another characterization of the POSh solution.

It also relates the POSh to a Shapley-like solution concept in transferable utility
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games. We recall that an agent’s preference ⪰ is homothetic if for all x,y ∈ RL
+

and all α ∈ R+, x ⪰ y if and only if αx ⪰ αy. We denote by Eh the set of economies

where agents’ preferences are homothetic.

In the set Eh, we characterize the POSh solution using a “weighted balanced

contributions” axiom. Myerson (1980) proposes the fairness notion that “any two

players should enjoy the same gains from their cooperation together, relative to what

they would get without cooperation.” Following this idea, he defines the balanced

contributions axiom and shows that, together with efficiency, it characterizes the

Shapley value. Hart and Mas-Colell (1989) extend this result to weighted Shapley

values, using a weighted balanced contributions axiom.

Proposition 8 shows that the POSh solution is also characterized by a weighted

balanced contributions axiom, where the level of his initial endowment gives the

weight associated with each agent.

Proposition 8. Consider a solution F for the set of economies where agents have

homothetic preferences, that is, F : Eh ⇝
⋃

N RN×L
+ . Then, F = POSh if and only

if x ∈ E(N,w,⪰) and

ui(x
N
i )− ui(x

N\{j}
i )

ui(wi)
=

uj(x
N
j )− uj(x

N\{i}
j )

uj(wj)
, (1)

for any xN ∈ F (N,w,⪰), xN\{j} ∈ F (N \ {j},w |N\{j},⪰|N\{j}), x
N\{i} ∈ F (N \

{i},w |N\{i},⪰|N\{i}), any (N,w,⪰) ∈ Eh, and any profile of utility functions (ui)i∈N

that represents the preference profile ⪰.7

The interpretation of the weighted balanced contribution property that charac-

terizes the POSh in homothetic environments is the same as in TU games. Consider

any representation of the agents’ preferences. Then, the difference in the utility that

any agent obtains in the economies with him and without him, normalized by the

utility that he derives from his initial endowment, must be the same for all the

agents. It is a fairness requirement that takes into account that an agent’s contri-

bution to the common pool is more significant when his initial endowment is larger.

Interestingly, given that we use the initial endowments as the yardstick to mea-

sure the variation of an agent’s welfare in the POSh, we can connect the POSh

7 We normalize ui(0) = 0 for all i ∈ N .
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and the “proportional Shapley value” (PSh for short) for TU games (Besner, 2016,

and Béal at al., 2018), when preferences are homothetic. The PSh is a weighted

Shapley value in which the players’ weights are endogenously given by the players’

stand-alone worths. Béal et al. (2018) use Hart and Mas-Colell’s (1989) result to

characterize the PSh by efficiency and the “proportional balanced contributions”

property, which is the weighted balanced contributions property with weights pro-

portional to the players’ stand-alone worth. Thus, the proportional balanced con-

tributions property is similar to the property stated in (1) once we consider ui(wi)

as the utility worth of agent i if he stays alone.

Moreover, the POSh solution and the PSh coincide in pure exchange economies

(N,w,⪰) in which each agent i’s preference⪰i is representable as a (homothetic and)

quasi-linear utility function ui(x) = wi(x |L\{m}) + xm, where x |L\{m}∈ RL\{m}
+ and

xm ∈ R. The specially treated commodity m ∈ L in each agent’s utility function

can be interpreted as “money.” Such an economy can be naturally turned into a

TU game (N, v) by letting v(S) ≡ maxz∈Z(S,w|S)
∑

i∈S ui(zi) for each S ∈ 2N \ {∅}.

Then, the utility profile of any allocation in POSh(N,w,⪰) according to u coincides

with PSh(N, v).8

5 Conclusion

We espouse a new ordinal solution concept for pure exchange economies, the POSh

solution. Its construction is inspired by the potential function, which allows a nice

characterization of the Shapley value in TU games. The POSh solution satisfies

properties similar to the Shapley value, such as efficiency, anonymity, and properties

related to null players. It is also individually rational and does not suffer from agents’

manipulation via their initial endowment.

We further highlight the link between the POSh for pure exchange economies

and the Shapley value for TU games by characterizing the POSh through Harsanyi’s

(1959) coalitional dividends and, when the agents have homothetic preferences,

through a weighted balanced contribution property à la Myerson (1980).

8 See the Appendix for the proof of this result.
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One natural avenue for future research is extending our solution concept and its

properties to pure exchange economies with a continuum of agents of finite types. It

is easy to extend the notions of the potential and the proportional ordinal Shapley

solution to these economies. However, the analysis of the properties of the POSh

in these environments is outside the scope of this paper.

Appendix

Proof of Proposition 1. First, we show that there exists at most one potential func-

tion. Suppose otherwise, that is, suppose that there exist two distinct potential

functions P and P ′. Then, without loss of generality, assume that for (N,w,⪰), it

happens that P (N,w,⪰) > P ′(N,w,⪰) and P (S,w|S,⪰|S) = P ′(S,w|S,⪰|S) for all

S ∈ 2N \ {N}. This implies that there exist two allocations x,y ∈ E(N,w,⪰) such

that xk ∼k (P (N,w,⪰)−P (N \ {k},w))wk ≻k (P
′(N,w,⪰)−P ′(N \ {i},w |N\{k}

,⪰|N\{k}))wk ∼k yk for all k ∈ N , where the strict preference follows from strong

monotonicity and the premise on P and P ′. However, this contradicts that y ∈

E(N,w,⪰). Therefore, there exists at most one potential function.

Second, to prove the existence of a potential function for any (N,w,⪰) ∈ E ′, we

construct inductively the potential P (S,w |S,⪰|S) of each subeconomy (S,w |S,⪰|S)

of (N,w,⪰) ∈ E ′, on the number of agents |S|:

1. For |S| = 0, P (∅) ≡ 0;

2. for |S| ≥ 1, we hypothesize that P (T,w |T ,⪰|T ) has been defined for each

T ⊊ S. Then, we define P (S,w |S,⪰|S) ≡ sup{P ∈ R | ∃x ∈ Z(S,w |S) such

that
(
P − P (S \ {i},w |S\{i},⪰|S\{i})

)
wi ⪯i xi for all i ∈ S}.

It is easy to see that P (S,w |S,⪰|S) = 1 for |S| = 1. Consider S with |S| ≥ 2

(and the induction hypothesis stated in point 2 above). We start by showing that

P (S,w |S,⪰|S) is well-defined for |S| ≥ 2, i.e., the set Π ≡ {P ∈ R | ∃x ∈ Z(S,w |S)

such that
(
P − P (S \ {i},w |S\{i},⪰|S\{i})

)
wi ⪯i xi for all i ∈ S} is not empty.

Let k ∈ argmaxi∈S P (S \ {i},w |S\{i},⪰|S\{i}). We claim that P (S \ {k},w |S\{k}

,⪰|S\{k}) ∈ Π. To show it, take y ∈ RS×L
+ such that yk = 0 and y |S\{k}∈ POSh(S\
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{k},w |S\{k},⪰|S\{k}). It is immediate that y ∈ Z(S,w |S). Moreover,
(
P (S \

{k},w |S\{k},⪰|S\{k}) − P (S \ {k},w |S\{k},⪰|S\{k})
)
wk ∼i yk = 0. Lastly, for

any i ∈ S \ {k},
(
P (S \ {k},w|S\{k},⪰|S\{k}) − P (S \ {i},w |S\{i},⪰|S\{i})

)
wi ⪯i(

P (S \ {k},w |S\{k},⪰|S\{k}) − P (S \ {i, k},w |S\{i,k},⪰|S\{i,k})
)
wi ∼i yi because

P (S\{i},w |S\{i},⪰|S\{i}) ≥ P (S\{i, k},w |S\{i,k},⪰|S\{i,k}) and y |S\{k}∈ POSh(S\

{k},w |S\{k},⪰|S\{k}).

Once we have proved that P (S,w |S,⪰|S) is well-defined, we show that it satisfies

that
(
P (S,w |S,⪰|S) − P (S \ {i},w |S\{i},⪰|S\{i})

)
wi ∼i xi for all i ∈ S and some

x ∈ E(S,w |S,⪰|S). Note that P (S,w |S,⪰|S) satisfies that
(
P (S,w |S,⪰|S)−P (S \

{i},w |S\{i},⪰|S\{i})
)
wi ⪯i xi for all i ∈ S and some x ∈ E(S,w |S,⪰|S) because

each agent’s preference is continuous and Z(S,w |S) is closed. We prove our claim by

contradiction: if there exists k ∈ S such that
(
P (S,w |S,⪰|S)− P (S \ {k},w |S\{k}

,⪰|S\{k})
)
wk ≺k xk, then it is possible to construct an alternative feasible allocation

profile y ∈ Z(S,w |S) such that
(
P (S,w |S,⪰|S)−P (S \ {i},w |S\{i},⪰|S\{i})

)
wi ≺i

yi for all i ∈ S. The existence of the profile y would imply that the supremum

was not attained at P (S,w |S,⪰|S) since P (S,w |S,⪰|S) could be increased by a

sufficiently small amount without violating feasibility. To construct y from x, first

note that 0 ⪯k

(
P (S,w |S,⪰|S) − P (S \ {k},w |S\{k},⪰|S\{k})

)
wk ≺k xk, hence

xkh > 0 for some h ∈ L. Define y by

yig ≡


xig if i ∈ S and g ∈ L \ {h},

xig − ϵ if i = k and g = h,

xig +
ϵ
|S| if i ∈ S \ {k} and g = h,

where ϵ ∈ R++ is sufficiently small so that
(
P (S,w |S,⪰|S) − P (S \ {k},w |S\{k}

,⪰|S\{k})
)
wk ≺k yk and ykh ≥ 0. By strong monotonicity, we have

(
P (S,w |S,⪰|S

)− P (S \ {i},w |S\{i},⪰|S\{i})
)
wi ≺i yi for all i ∈ S.

Therefore, we have proven the existence of a potential function restricted to E ′,

which concludes the proof of the proposition.

Proof of Proposition 2. The empty-agent property follows from the efficiency in-

cluded in Definition 12, once we prove the empty-agent out property, which we now

do.
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First, we claim that any potential function satisfies

P (N,w,⪰) = P (supp(N,w,⪰)) + P (0(N,w,⪰)). (2)

We prove equation (2) by an induction on p, by which we denote the number of non-

empty agents of an economy (N,w,⪰) with q empty agents (q is an arbitrary fixed

positive number). The equation holds trivially for an economy with only q empty

agents, i.e., when p = 0. Then, consider an economy (N,w,⪰) with p ≥ 1 non-empty

agents and q empty agents. Denote by x ∈ E(supp(N,w,⪰)) an allocation profile

satisfying that xi ∼i

(
P (supp(N,w,⪰))−P (supp(N \ {i},w |N\{i},⪰|N\{i}))

)
wi for

all non-empty agent i. The allocation x satisfies that for each non-empty agent i,

xi ∼i

[(
P (supp(N,w,⪰)) + P (0(N,w,⪰))

)
−
(
P (supp(N \ {i},w |N\{i},⪰|N\{i}))

+ P (0(N,w,⪰))
)]
wi

=
[(
P (supp(N,w,⪰)) + P (0(N,w,⪰))

)
−
(
P (supp(N \ {i},w |N\{i},⪰|N\{i}))

+ P (0(N \ {i},w |N\{i},⪰|N\{i}))
)]
wi

=
[(
P (supp(N,w,⪰)) + P (0(N,w,⪰))

)
− P (N \ {i},w |N\{i},⪰|N\{i})

]
wi,

where the first equality follows from the premise that i is not an empty agent and

the second from the induction hypothesis (there exist p − 1 non-empty agents in

(N \ {i},w |N\{i},⪰|N\{i})). Then consider a new allocation profile y ∈ E(N,w,⪰),

where yj = xj for each non-empty agent j and yk = 0 for each empty agent k. Notice

that the constructed profile y satisfies that yi ∼i

(
P o(N,w,⪰)−P (N \ {i},w |N\{i}

,⪰|N\{i})
)
wi for all i ∈ N , where we define P o(N,w,⪰) ≡ P (supp(N,w,⪰)) +

P (0(N,w,⪰)). Moreover, by strong monotonicity, p ≥ 1, and an argument simi-

lar to that establishing the uniqueness of the potential function restricted to E ′ in

Proposition 1, we have that the numerical value of the potential is unique, hence

P o(N,w,⪰) = P (N,w,⪰). Finally, since q is arbitrary, we have proven the equation

(2), which immediately implies the empty-agent out property of any POSh.

Proof of Theorem 1. Let us denote by POSh′ the proportional ordinal Shapley so-

lution restricted to E ′, which is unique and essentially single-valued by Corollary 1.

First, by Proposition 2, any POSh for E satisfies the empty-agent property and the
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empty-agent out property. Therefore, for any POSh and any (N,w,⪰),

x ∈ POSh(N,w,⪰) ⇐⇒ x |S∈ POSh′(S,w |S,⪰|S) and x |N\S= 0, (3)

where (S,w |S,⪰|S) = supp(N,w,⪰). Hence, if POSh exists for E , it is also unique

and essentially single-valued.

Second, denote by P ′ the potential associated with POSh′ in E ′. We now propose

the following potential function P : E → R:

P (N,w,⪰) ≡ P ′(supp(N,w,⪰)). (4)

We show that the function P can be associated with the POSh that we constructed

in (3) for E ; that is,
(
P (N,w,⪰) − P (N \ {i},w |N\{i},⪰|N\{i}))

)
wi ∼i xi for all

x ∈ POSh(N,w,⪰) and all i ∈ N . If wi = 0, then the result is immediate

because POShi(N,w,⪰) = {0}. Otherwise, consider an economy (N,w,⪰) where

i is a non-empty agent, and x ∈ POSh(N,w,⪰). Then, equation (3) states that

x ∈ POSh′
i(supp(N,w,⪰)). Therefore, xi ∼i

(
P ′(supp(N,w,⪰)) − P ′(supp(N \

{i},w |N\{i},⪰|N\{i})))
)
wi =

(
P (N,w,⪰)− P (N \ {i},w |N\{i},⪰|N\{i}))

)
wi.

Finally, let N ′ ⊆ N be the set of non-empty agents in (N,w,⪰). Then x ∈

E(N,w,⪰) and xi ≡ 0 for all i ∈ N \ N ′ if and only if x |N ′∈ E(supp(N,w,⪰)).

Thus, the constructed P : E → R is a potential function associated with the POSh

for E , which means that there exists a POSh for E .

Proof of Proposition 3. We first prove anonymity of the POSh. It is easy to see

that the efficient allocation correspondence is anonymous, that is,

x ∈ E(N,w,⪰) =⇒ πx ∈ E(π(N,w,⪰)), (5)

for all bijection π : N → N ′ and all (N,w,⪰) ∈ E .

Consider an economy (N,w,⪰) ∈ E and an arbitrary bijection π : N → N ′.

We are going to prove simultaneously that (π |S)x ∈ POSh(π |S (S,w |S,⪰|S))

for every x ∈ POSh(S,w |S,⪰|S) and every S ∈ 2N \ {∅} and that we could let

P (π |S (S,w |S,⪰|S)) = P (S,w |S,⪰|S) for every S ⊆ N by induction on |S|.

For |S| = 0, it trivially holds because P (S) = P (∅) = 0. For |S| ≥ 1, x ∈

POSh(S,w |S,⪰|S), by definition, means that there exists x ∈ E(S,w |S,⪰|S) such
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that xi ∼i

(
P (S,w |S,⪰|S) − P (S \ {i},w |S\{i},⪰|S\{i})

)
wi for all i ∈ S. By the

induction hypothesis, P (π |S\{i} (S \ {i},w |S\{i},⪰|S\{i})) = P (S \ {i},w |S\{i}

,⪰|S\{i}) for all i ∈ S. Then, x ∈ POSh(S,w |S,⪰|S) implies that there exists (π |S

)x ∈ E(π |S (S,w|S,⪰|S)) such that ((π|S)x)π(i) ∼π
π(i)

(
P (S,w |S,⪰|S) − P (π |S\{i}

(S \ {i},w |S\{i},⪰|S\{i}))
)
(πw)π(i) for all i ∈ S because of (5), ((π |S)x)π(i) = xi,

and ∼π
π(i)=∼i. That is, there exists (π |S)x ∈ E(π |S (S,w |S,⪰|S)) such that

(π |S x)j ∼π
j

(
P (S,w |S,⪰|S)−P (π |S\{π−1(j)})(S \ {π−1(j)},w |S\{π−1(j)},⪰|S\{π−1(j)}

)
)
(πw)j for all j ∈ π[S]. It means that (π |S)x ∈ POSh(π |S (S,w |S,⪰|S)) and

P (π |S (S,w |S,⪰|S)) = P (S,w |S,⪰|S), which concludes the inductive step. Hence,

POSh satisfies anonymity.

To prove neutrality, again it is easy to see that the efficient allocation correspon-

dence is neutral, that is,

x ∈ E(N,w,⪰) =⇒ ρx ∈ E(ρ(N,w,⪰)), (6)

for all bijection ρ : L → L′ and all (N,w,⪰) ∈ E .

Consider an economy (N,w,⪰) ∈ E and an arbitrary bijection ρ : L → L′.

We are going to prove simultaneously that ρx ∈ POSh(ρ(S,w |S,⪰|S)) for every

x ∈ POSh(S,w |S,⪰|S) and every S ∈ 2N \ {∅} and that we could let P (ρ(S,w |S

,⪰|S)) = P (S,w |S,⪰|S) for every S ⊆ N by induction on |S|. For |S| = 0, it

trivially holds because P (S) = P (∅) = 0. For |S| ≥ 1, x ∈ POSh(S,w |S,⪰|S), by

definition, means that there exists x ∈ E(S,w |S,⪰|S) such that xi ∼i

(
P (S,w |S

,⪰|S) − P (S \ {i},w |S\{i},⪰|S\{i})
)
wi for all i ∈ S. By the induction hypothesis,

P (ρ(S \ {i},w |S\{i},⪰|S\{i})) = P (S \ {i},w |S\{i},⪰|S\{i}) for all i ∈ S. Then,

x ∈ POSh(S,w |S,⪰|S) implies that there exists ρx ∈ E(ρ(S,w |S,⪰|S)) such that

ρxi ∼ρ
i

(
P (S,w |S,⪰|S)−P (ρ(S\{i},w |S\{i},⪰|S\{i}))

)
(ρw)i for all i ∈ S because of

(6) and the definitions of ρxi and ∼ρ
i . It means that ρx ∈ POSh(ρ(S,w |S,⪰|S)) and

P (ρ(S,w |S,⪰|S)) = P (S,w |S,⪰|S), which concludes the inductive step. Hence, the

POSh satisfies neutrality.

Proof of Proposition 4. Consider (N,w,⪰) ∈ E . We define a vector of dividends

(dS)S∈2N\{∅} by

dS ≡
∑
T⊆S

(−1)s+tP (T,w |T ,⪰|T ), (7)
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for all S ∈ 2N \ {∅}. Then it is easy to verify that

P (S,w |S,⪰|S) =
∑

T∈2S\{∅}

dT , (8)

for all S ∈ 2N \ {∅}. Furthermore, it yields

P (N ′,w |N ′ ,⪰|N ′)− P (N ′ \ {i},w |N ′\{i},⪰|N ′\{i}) =
∑
T∋i

T⊆N ′

dT , (9)

for all N ′ ∈ 2N \ {∅} and all i ∈ N ′.

By substituting equation (9) in Definition 12, we obtain the representation of

the POSh in terms of dividends in Proposition 4.

Proof of Proposition 5. Denote P the potential function associated to the POSh.

We show that xi ⪰i wi for all i ∈ N , all x ∈ POSh(N,w,⪰), and all (N,w,⪰) ∈ E

by induction on |N |. Since POSh({i},wi,⪰i) = {wi} for N = {i}, our assertion

trivially holds for |N | = 1.

For |N | ≥ 2, assume that the property holds for any economy with less than |N |

agents. Suppose , by contradiction, that it does not hold for (N,w,⪰), that is, there

exists i ∈ N such that xi ∼i

(
P (N,w,⪰)− P (N \ {i},w |N\{i},⪰|N\{i}))

)
wi ≺i wi.

Then there must exist j ∈ N \ {i} such that xj ≻j

(
P (N \ {i},w |N\{i},⪰|N\{i}))−

P (N \ {i, j},w |N\{i,j},⪰|N\{i,j}))
)
wj. The existence of such an agent j follows from

x ∈ E(N,w,⪰), xi ≺i wi, and the feasibility of the allocation that assigns agent i

with wi and the rest of agents with a bundle prescribed by POSh(N \ {i},w |N\{i}

,⪰|N\{i}), which is individually rational by the induction hypothesis. Therefore,

there exists j ∈ N \{i} such that
(
P (N,w,⪰)−P (N \{j},w |N\{j},⪰|N\{j}))

)
wj ∼j

xj ≻j

(
P (N \ {i},w |N\{i},⪰|N\{i}))− P (N \ {i, j},w |N\{i,j},⪰|N\{i,j}))

)
wj. Agent

j’s strict preference
(
P (N,w,⪰) − P (N \ {j},w |N\{j},⪰|N\{j}))

)
wj ≻j

(
P (N \

{i},w |N\{i},⪰|N\{i}))− P (N \ {i, j},w |N\{i,j},⪰|N\{i,j}))
)
wj implies that

P (N,w,⪰) + P (N \ {i, j},w |N\{i,j},⪰|N\{i,j}))− P (N \ {i},w |N\{i},⪰|N\{i}))

− P (N \ {j},w |N\{j},⪰|N\{j})) > 0 (10)

by strong monotonicity.
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On the other hand, by the induction hypothesis, we have
(
P (N \ {j},w |N\{j}

,⪰|N\{j}))−P (N \{i, j},w |N\{i,j},⪰|N\{i,j}))
)
wi ⪰i wi. Together with the inequal-

ity (10), it implies that

xi ∼i

(
P (N,w,⪰)− P (N \ {i},w |N\{i},⪰|N\{i}))

)
wi

=
[(
P (N \ {j},w |N\{j},⪰|N\{j}))− P (N \ {i, j},w |N\{i,j},⪰|N\{i,j}))

)
+
(
P (N,w,⪰) + P (N \ {i, j},w |N\{i,j},⪰|N\{i,j}))− P (N \ {i},w |N\{i},⪰|N\{i}))

− P (N \ {j},w |N\{j},⪰|N\{j}))
)]
wi

⪰i

(
P (N \ {j},w |N\{j},⪰|N\{j}))− P (N \ {i, j},w |N\{i,j},⪰|N\{i,j}))

)
wi ⪰i wi,

which contradicts our assumption. Therefore, the POSh satisfies individual ratio-

nality.

Proof of Proposition 6. Consider two economies (N,w,⪰), (N,w′,⪰) ∈ E such that

wi > w′
i for i ∈ N and wj = w′

j for each j ∈ N \ {i}. We claim that P (S,w |S,⪰|S

)−P (S \{i},w |S\{i},⪰|S\{i}) ≥ P (S,w′ |S,⪰|S)−P (S \{i},w′ |S\{i},⪰|S\{i}) for all

S ⊆ N such that S ∋ i. We prove the claim by induction on |S|. It trivially holds

for |S| = 1.

For S ⊆ N such that |S| ≥ 2, suppose otherwise: P (S,w |S,⪰|S) − P (S \

{i},w |S\{i},⪰|S\{i}) < P (S,w′ |S,⪰|S) − P (S \ {i},w′ |S\{i},⪰|S\{i}) for some i ∈

S and P (T,w |T ,⪰|T ) − P (T \ {j},w |T\{j},⪰|T\{j}) ≥ P (T,w′ |T ,⪰|T ) − P (T \

{j},w′ |T\{j},⪰|T\{j}) for all T ∈ 2S \ {∅, S} and all j ∈ T . Then,
(
P (S,w |S,⪰|S

)−P (S \{i},w |S\{i},⪰|S\{i})
)
−
(
P (S \{j},w |S\{j},⪰|S\{j})−P (S \{i, j},w |S\{i,j}

,⪰|S\{i,j})
)
<

(
P (S,w′ |S,⪰|S)− P (S \ {i},w′ |S\{i},⪰|S\{i})

)
−
(
P (S \ {j},w′ |S\{j}

,⪰|S\{j})− P (S \ {i, j},w′ |S\{i,j},⪰|S\{i,j})
)
for all j ∈ S \ {i}. But, it implies that

P (S,w |S,⪰|S)− P (S \ {j},w |S\{j},⪰|S\{j})

=
(
P (S \ {i},w |S\{i},⪰|S\{i})− P (S \ {i, j},w |S\{i,j},⪰|S\{i,j})

)
+
[(
P (S,w |S,⪰|S)− P (S \ {i},w |S\{i},⪰|S\{i})

)
−

(
P (S \ {j},w |S\{j},⪰|S\{j})− P (S \ {i, j},w |S\{i,j},⪰|S\{i,j})

)]
=
(
P (S \ {i},w′ |S\{i},⪰|S\{i})− P (S \ {i, j},w′ |S\{i,j},⪰|S\{i,j})

)
+
[(
P (S,w |S,⪰|S)− P (S \ {i},w |S\{i},⪰|S\{i})

)
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−
(
P (S \ {j},w |S\{j},⪰|S\{j})− P (S \ {i, j},w |S\{i,j},⪰|S\{i,j})

)]
<
(
P (S \ {i},w′ |S\{i},⪰|S\{i})− P (S \ {i, j},w′ |S\{i,j},⪰|S\{i,j})

)
+
[(
P (S,w′ |S,⪰|S)− P (S \ {i},w′ |S\{i},⪰|S\{i})

)
−

(
P (S \ {j},w′ |S\{j},⪰|S\{j})− P (S \ {i, j},w′ |S\{i,j},⪰|S\{i,j})

)]
=P (S,w′ |S,⪰|S)− P (S \ {j},w′ |S\{j},⪰|S\{j}),

for all j ∈ S \ {i}. Consequently, POShk(S,w |S,⪰|S) ≺k POShk(S,w
′ |S,⪰|S)

for all k ∈ S (including i himself by premise), which is impossible. Therefore, the

POSh is not D-manipulable.

Proof of Proposition 7. Consider two economies (N,w,⪰), (N,w′,⪰) ∈ E such that

wi > w′
i, wi + wj = w′

i + w′
j for donor i and recipient j; wk = w′

k for each

k ∈ N \{i, j}. By considering the subeconomies without player j and without player

i, Proposition 6 implies that P (N \ {j},w |N\{j},⪰|N\{j}) − P (N \ {i, j},w |N\{i,j}

,⪰|N\{i,j}) ≥ P (N \ {j},w′ |N\{j},⪰|N\{j})− P (N \ {i, j},w′ |N\{i,j},⪰|N\{i,j}).

Assume that the donor i is better off in (N,w′,⪰) than in (N,w,⪰) under

POSh, which means that P (N,w,⪰) − P (N \ {i},w |N\{i},⪰|N\{i}) < P (N,w′,⪰

) − P (N \ {i},w′ |N\{i},⪰|N\{i}). Combining two inequalities together, we have

P (N,w,⪰) − P (N \ {i},w |N\{i},⪰|N\{i}) − P (N \ {j},w |N\{j},⪰|N\{j}) + P (N \

{i, j},w |N\{i,j},⪰|N\{i,j}) < P (N,w′,⪰) − P (N \ {i},w′ |N\{i},⪰|N\{i}) − P (N \

{j},w′ |N\{j},⪰|N\{j}) + P (N \ {i, j},w′ |N\{i,j},⪰|N\{i,j}). But then,

P (N,w,⪰)− P (N \ {j},w |N\{j},⪰|N\{j})

=P (N \ {i},w |N\{i},⪰|N\{i})− P (N \ {i, j},w |N\{i,j},⪰|N\{i,j})

+
(
P (N,w,⪰)− P (N \ {i},w |N\{i},⪰|N\{i})− P (N \ {j},w |N\{j},⪰|N\{j})

+ P (N \ {i, j},w |N\{i,j},⪰|N\{i,j})
)

≤P (N \ {i},w′ |N\{i},⪰|N\{i})− P (N \ {i, j},w′ |N\{i,j},⪰|N\{i,j})

+
(
P (N,w,⪰)− P (N \ {i},w |N\{i},⪰|N\{i})− P (N \ {j},w |N\{j},⪰|N\{j})

+ P (N \ {i, j},w |N\{i,j},⪰|N\{i,j})
)

<P (N \ {i},w′ |N\{i},⪰|N\{i})− P (N \ {i, j},w′ |N\{i,j},⪰|N\{i,j})

+
(
P (N,w′,⪰)− P (N \ {i},w′ |N\{i},⪰|N\{i})− P (N \ {j},w′ |N\{j},⪰|N\{j})
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+ P (N \ {i, j},w′ |N\{i,j},⪰|N\{i,j})
)

=P (N,w′,⪰)− P (N \ {j},w′ |N\{j},⪰|N\{j}).

It means that recipient j must also be better off in (N,w′,⪰) under POSh. There-

fore, the transfer paradox is not possible under POSh

Proof of Proposition 8. We first prove that the POSh satisfies equation (1) in Eh.

Let P the potential function of the POSh. Then, for any xN ∈ POSh(N,w,⪰)

and any (ui)i∈N that represents ⪰,

ui(x
N
i ) = ui

((
P (N,w,⪰)− P (N \ {i},w |N\{i},⪰|N\{i})

)
wi

)
=

(
P (N,w,⪰)− P (N \ {i},w |N\{i},⪰|N\{i})

)
ui(wi),

where the last equality holds by homotheticity. A similar expression can be obtained

for the allocations x
N\{j}
i , xN

j , and x
N\{i}
j . Therefore, (1) is equivalent to

(
P (N,w,⪰)− P (N \ {i},w |N\{i},⪰|N\{i})

)
−

(
P (N \ {j},w |N\{j},⪰|N\{j})− P (N \ {j, i},w |N\{j,i},⪰|N\{j,i})

)
=

(
P (N,w,⪰)− P (N \ {j},w |N\{j},⪰|N\{j})

)
−

(
P (N \ {i},w |N\{i},⪰|N\{i})− P (N \ {i, j},w |N\{i,j},⪰|N\{i,j})

)
,

which trivially holds.

We now prove that if the solution F prescribes efficient allocations that satisfy

equation (1), then it is necessarily the POSh. According to Definition 12, we need

to find a potential function P such that

(
P (N,w,⪰)− P (N \ {i},w |N\{i},⪰|N\{i})

)
wi ∼i xi (11)

for all i ∈ N and all x ∈ F (N,w,⪰). We construct such a function P by induction

on the number of players |N |. We define P (∅) = 0. If |N | = 1, equation (1) implies

that x = w if x ∈ F (N,w,⪰). Hence, we can define P (N,w,⪰) = 1 when |N | = 1

and the function P satisfies equation (11).

Consider now an economy (N,w,⪰) with |N | > 1. Assume that the function P

has been defined for any economy with a number of agents lower than |N | and that
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it satisfies (11). Then, equation (1) is equivalent to:

ui(x
N
i )

ui(wi)
−

(
P (N \ {j},w |N\{j},⪰|N\{j})− P (N \ {i, j},w |N\{i,j},⪰|N\{i,j})

)
=

uj(x
N
j )

uj(wj)
−

(
P (N \ {i},w |N\{i},⪰|N\{i})− P (N \ {i, j},w |N\{i,j},⪰|N\{i,j})

)
.

Therefore,

ui(x
N
i )

ui(wi)
+ P (N \ {i},w |N\{i},⪰|N\{i}) =

uj(x
N
j )

uj(wj)
+ P (N \ {j},w |N\{j},⪰|N\{j})

for any i, j ∈ N . Define

P (N,w,⪰) ≡ ui(x
N
i )

ui(wi)
+ P (N \ {i},w |N\{i},⪰|N\{i}),

where i ∈ N (and the definition is correct because it does not depend on i). Then,

equation (11) holds if

ui(x
N
i )

ui(wi)
wi ∼i x

N
i ,

which is immediate for homothetic preferences. Hence, the function P is a potential,

which concludes the proof.

Proof of the relationship between the POSh and the PSh. We restrict attention to

economies (N,w,⪰) where each agent i’s preference ⪰i is representable by a homo-

thetic and quasi-linear utility function ui(x) = wi(x |L\{m}) + xm. Define the TU

game (N, v) by letting v(S) ≡ maxz∈Z(S,w|S)
∑

i∈S ui(zi) for each S ∈ 2N \ {∅}.

We are going to prove that ui(x) = PShi(N, v) for all x ∈ POSh(N,w,⪰) and

i ∈ N . Given that the PSh satisfies the properties of dummy player and dummy

player out and the POSh satisfies empty-agent and empty-agent out, we restrict

attention here to economies where agents have positive endowments; the result is

immediate for the empty agents. Moreover, Béal at al. (2018) show that the PSh

can be characterized in terms of the “proportional potential,” which is defined as a

function P that satisfies that
∑

i∈N
(
P (N, v) − P (N \ {i}, v)

)
v({i}) = v(N). This

definition of the potential is similar to that of the potential of the POSh. We proof

the result by showing that the potential functions of the two environments coincide,

that is, P (N,w,⪰) = P (N, v). We prove it by induction on the number of agents

|N |.
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For |N | = 1, (P ({i},wi,⪰i) − P (∅))wi ∼i wi implies that P ({i},wi,⪰i) = 1.

For its induced TU game, v({i}) = ui(wi) > 0 (because wi ̸= 0, ui(0) = 0 given

that preferences are homothetic, and by strong monotonicity). Then, we have that

PShi(v) = v({i}) =
(
(P ({i}, v)− P (∅)

)
v({i}) implies P ({i}, v) = 1.

For |N | ≥ 2, we hypothesize that P (S,w |S,⪰|S) = P (S, v) for all S ⊊ N .

Then, P (N,w,⪰) satisfies that there exists x ∈ E(N,w,⪰) such that
(
P (N,w,⪰

) − P (N \ {i},w |N\{i},⪰|N\{i})
)
wi ∼i xi, i.e.,

(
P (N,w,⪰) − P (N \ {i},w |N\{i}

,⪰|N\{i})
)
ui(wi) = ui(xi) by homothetic preferences. The previous equality implies,

by quasi-linearity, that
∑

i∈N
(
P (N,w,⪰) − P (N \ {i},w |N\{i},⪰|N\{i})

)
ui(wi) =∑

i∈N ui(xi) = v(N). Using the induction argument we obtain
∑

i∈N
(
P (N,w,⪰

) − P (N \ {i}, v)
)
v({i}) = v(N). Hence, the function P (N,w,⪰) satisfies the

defining equation of P (N, v), which means that P (N,w,⪰) = P (N, v).
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